1021



# Isabella Weir Upgrade Design and Construction Monitoring

# Site Investigations Factual and Interpretive Report

# **Revision A**

Project Number 3002402

Prepared for: ACT Government Shared Services Procurement Date: 28-05-15



| DOCUMENT CO  | ONTROL               |                                     |                      |           |  |  |  |
|--------------|----------------------|-------------------------------------|----------------------|-----------|--|--|--|
| Title        | Isabella Weir Upg    | Isabella Weir Upgrade -             |                      |           |  |  |  |
| Prepared for | ACT Governmen        | t – Shared Services F               | Procurement          |           |  |  |  |
| Project Ref  | 3002402              |                                     |                      |           |  |  |  |
|              | Name                 | Position                            | Signed/Approved      | Date      |  |  |  |
| Originator   | Schedule 2.2.(a)(ii) | Snr Geotechnical<br>Engineer        | Schedule 2.2 (a)(ii) | 28-5-2015 |  |  |  |
| Review       | Schedule 2.2 (a)(ii) | Chief Technical<br>Principal - Dams |                      |           |  |  |  |
| Approval     | Schedule 2.2 (a)(ii) | Project Director                    |                      |           |  |  |  |

| Details of Revisions |            |                                                                 |         |          |  |
|----------------------|------------|-----------------------------------------------------------------|---------|----------|--|
| Rev                  | Date       | Description                                                     | WVR No. | Approved |  |
| A                    | 28/05/2015 | Isabella Weir Upgrade -<br>Geotechnical Investigation<br>Report |         |          |  |
|                      |            |                                                                 |         |          |  |
|                      |            |                                                                 |         |          |  |
|                      |            |                                                                 |         |          |  |
|                      |            |                                                                 |         |          |  |
|                      |            |                                                                 |         |          |  |

# **CONTACT DETAILS**

SMEC Australia Pty Ltd | www.smec.com

Suite 2, Level 1, 243 Northbourne Avenue Lyneham, ACT, 2602 Tel: 02 6234 1900 Fax: 02 6234 1966

Representative:

| Name: | Schedule 2.2 (a)(ii) |
|-------|----------------------|
| P:    | Schedule 2.2 (a)(ii) |
| E:    | Schedule 2.2 (a)(ii) |

# TABLE OF CONTENTS

| 1.  | INTR             | ODUCTION1                                                                         |
|-----|------------------|-----------------------------------------------------------------------------------|
| 2.  | BACI             | KGROUND INFORMATION                                                               |
|     | 2.1              | Weir Description                                                                  |
|     | 2.2              | Regional Geology                                                                  |
|     | 2.3              | Previous Geotechnical Investigations                                              |
|     | 2.3.2            | Coffey (1985) Borehole Investigations                                             |
|     | 2.3.3            | Coffey (1987) Geological Mapping7                                                 |
|     | 2.3.4            | Jacobs/SKM 2014 Risk and Options Assessment7                                      |
| 3.  | SME              | C SITE INVESTIGATIONS                                                             |
|     | 3.1              | General11                                                                         |
|     | 3.2              | Conduct of Investigations11                                                       |
|     | 3.2.1            | Site Survey11                                                                     |
|     | 3.2.2            | Potholing of Services                                                             |
|     | 3.2.3            | Test Pit Excavations                                                              |
|     | 3.2.4            | Geological Mapping15                                                              |
| 4.  | GEO <sup>-</sup> | TECHNICAL INVESTIGATION RESULTS 16                                                |
|     | 4.1.1            | General                                                                           |
|     | 4.1.2            | Results of Test Pits in Crest of Embankment16                                     |
|     | 4.1.3            | Results of Test Pits in Upstream Toe of Embankment 18                             |
|     | 4.1.4            | Seepage Water Observations                                                        |
|     | 4.1.5            | Laboratory Testing Results                                                        |
|     | 4.1.6            | Results of Downstream Geological Mapping29                                        |
| 5.  | INTE             | RPRETED GEOTECHNICAL MODEL                                                        |
|     | 5.1              | General                                                                           |
|     | 5.2              | Geotechnical Material Units                                                       |
|     | 5.3              | Interpreted Geotechnical Design Parameters                                        |
|     | 5.4              | Interpreted Geotechnical Long-sections                                            |
|     | 5.5              | Interpretation of Geological Mapping                                              |
| 6.  | SUMI             | MARY AND CONCLUSIONS                                                              |
| APF | PENDI            | X 2.01: ISABELLA WEIR – "AS-CONSTRUCTED" DRAWINGSI                                |
| APF | Pendix<br>I      | X 2.02: COFFEY 1985 – RELEVANT BH LOGS, UCS AND POINT LAD TEST RESULTS            |
| APF | PENDI            | X 2.03: COFFEY 1985 – EMBANKMENT MATERIAL DESIGN GRADINGSI                        |
|     |                  | X 2.04: COFFEY 1987 – RESULTS OF GEOLOGICAL MAPPING OF ROCK FOUNDATION<br>A WEIRI |
| APF | PENDI            | X 2.05: JACOBS/SKM 2014, BOREHOLE LOGSI                                           |

# 1024

ACT Government – Shared Services Procurement | Isabella Weir Upgrade Design

| APPENDIX 2.06: JACOBS/SKM 2014, LABORATORY TESTING CERTIFICATESI |
|------------------------------------------------------------------|
| APPENDIX 3.01: ISABELLA WEIR SITE SURVEY, LEACH STEGER 2015I     |
| APPENDIX 3.02: SERVICES POTHOLING REPORT, LEACH STEGER 2015I     |
| APPENDIX 3.03: SMEC GEOTECHNICAL DRAWINGS 2015I                  |
| APPENDIX 3.04: SMEC TEST PIT LOGS, SKETCHES AND PHOTOSI          |
| APPENDIX 4.01: SMEC LABORATORY TESTING CERTIFICATES, 2015I       |
| APPENDIX 4.02: SMEC STEREONET POLE PLOTS, 2015I                  |

# 1.INTRODUCTION

Isabella Weir is located on Tuggeranong Creek in Canberra, ACT. The weir was constructed in the mid to late 1980's to form the Isabella Pondage and regulate flows into Lake Tuggeranong.

The weir has been the subject of a number of recent studies due to the downstream development of the South Quay in the Greenway Estate. The results of these studies require the weir to be upgraded to enable the passing of the 1 in 10,000 AEP flood due to a revised Flood Consequence Category now assigned to the weir. The required discharge capacity of the weir is 1020m<sup>3</sup>/sec.

It is understood that the upgrade works will comprise doubling the width of the overflow (labyrinth) section of the weir and potentially raising the level of the flanking embankments on either side of the weir to accommodate the 1 in 10,000 AEP flood.

As part of the design inputs for upgrading the weir structure, site investigations were undertaken, comprising:

- Desktop review of existing geotechnical information;
- Site survey;
- Underground services potholing;
- Test pit excavations;
- Geological mapping of exposed rock structure; and
- Laboratory testing of soil samples recovered from test pits.

This report has been prepared to present details of the site investigations and comprises:

- Discussion of background information;
- Conduct of site investigations;
- Factual results of investigations; and
- Interpretation of geotechnical model.

# 2.BACKGROUND INFORMATION

# 2.1 Weir Description

Isabella Weir is located on Tuggeranong Creek in Canberra. The weir impounds Isabella Pond and receives water from Tuggeranong Creek and the Upper Stranger Pond via a diversion under Isabella Drive. Flow from the Isabella Weir discharges into the storage pond formed by the Tuggeranong Weir, which is located approximately one kilometre downstream. The primary purpose of the weir is to control the quality of storm water runoff from the surrounding area and provide a recreational facility.

A copy of the "Works as Executed" (W.A.E.) weir design drawings that were reviewed as part of the current geotechnical investigations are provided in Appendix 2.01.

The general arrangement of the structure comprises:

- Centrally located reinforced concrete weir labyrinth overflow section; and
- Embankment dams on the flanks of overflow section.

The centrally located concrete over flow section of the weir comprises a 2.5 cycle concrete labyrinth spillway structure with:

- Crest level of EL575m (FSL);
- Height of 5.5m;
- Width between abutment walls of 29.5m; and
- Labyrinth weir crest length of 94m.

The zoned embankment dam sections flank the concrete overflow section of the weir. Coffey (1985), and Jacob/SKM (2014) in Figure 2 of their report, have indicated that the typical embankment sections comprise:

- Zoned embankment with:
  - Zone 1 impervious clay core;
  - Zone 1 impervious clay key trench cut off into foundation below clay core and founded in rock;
  - Zone 2 general semi-impervious fill both upstream and downstream of the clay core material;
  - Zone 3 0.5m thick filter blanket at downstream toe; and
  - Zone 4 graded rock fill with D50 of 13mm to 150mm size overlying the Zone 3 at the downstream toe of the bank.
- Embankment crest length of:
  - 120m length from spillway to left abutment; and
  - 50m length from spillway to right abutment.
- Crest level in the range of EL577.2m to EL578.0m; and a crest width of nominally 3m.
- Height at maximum section of nominally 8m.

Batter slopes of 4H:1V.

1027

Drawing W.A.E. 88/124323 shows the alignment of an abandoned 1050mm diameter sewer and a relocated 1050mm diameter sewer. Both of these sewers are shown to pass through the foundations of the left embankment. Special treatment of the embankment at the sewer locations is shown on the drawings to comprise:

- Special treatment of the abandoned 1050 dia. sewer trench includes:
  - Sewer line removed and ends of pipe blanked off with concrete blocks;
  - Zone 1 upstream seepage cut off;
  - Anchored mass concrete beneath the abutment return walls;
  - Zone 2 general back fill between upstream seepage cut-off and anchored concrete block; and
  - Widened Zone 1 clay core downstream of weir crest.
- Special treatment of the relocated 1050mm dia. sewer pipe and includes:
  - Concrete scour stop collars around pipe; and
  - Widening of Zone 1 backfill material upstream to a depth of nominally 6.4m below the crest of the clay core.

Drawing WAE88/12415 in Appendix 2.01 shows that the alignment of the weir crest has been set out relative to a control line between survey control points No. 7 at Ch 00m and No. 6 at Ch 210m.

# 2.2 Regional Geology

The regional geological conditions at the Isabella Weir are indicated on the Canberra Geological Map 1:100,000 Series Sheet 8727, (BMR 1992). The map indicates the rock to be near surface and is described as Deakin Volcanics of Late Silurian Age.

The Deakin Volcanics are described on the geological map as:

• Rhyodacite, dacitic and rhyodacitic crystal tuff, tuff, minor agglomerate, ashstone, tuffaceous ashstone & shale.

Generally the rock at the site comprises Dacite. Dacite is a fine grained quartz rich volcanic extrusive rock.

# 2.3 **Previous Geotechnical Investigations**

#### 2.3.1 General

Geotechnical investigations were undertaken at the Isabella Weir site prior to construction, during construction and as part of the SKM/Jacobs risk and options assessments. The available reports that provide the details of the prior geotechnical investigations comprise:

1. Coffey & Partners Pty Ltd, 1985, "Geotechnical Investigation for the Proposed Isabella Drive – Stage 5, Tuggeranong, ACT."

- 2. Coffey & Partners Pty Ltd, 1987, "Results of Geological Mapping of Rock Foundation Isabella Weir, Isabella Drive, Stage 5A, Tuggeranong Creek, ACT"
- 3. Jacobs/SKM, 30 Apr 2014, "Isabella Weir Risk and Options Assessment".

Details regarding the results of the previous investigations are given below.

### 2.3.2 Coffey (1985) Borehole Investigations

The Coffey (1985) report provides details of the geotechnical investigations which were undertaken prior to the design and construction of the weir. The weir construction formed part of the Isabella Drive Stage 5A Contract and this report provides details of the geotechnical information obtained for the Isabella Drive construction.

The geotechnical investigations of the foundation of the weir in Coffey (1985) comprise drilling of 4 cored boreholes namely:

- BH11 Left abutment of overflow labyrinth section;
- BH12 Right embankment;
- BH15 Left embankment; and
- BH16 Right abutment of overflow labyrinth section.

Typically the logs of the Coffey (1985) boreholes indicate that originally the site subsurface profile comprised:

#### **Right and Left Embankment Foundations**

- 0.0m to 1.5m depth FILL Gravelly Sandy CLAY/ Clayey SAND
- 1.5m to 2.5m depth ALLUVIAL SOIL Sandy CLAY/ Clayey-gravelly SAND
- 2.5m to 10.25m depth EW to MW ROCK DACITE: fine to medium grained, mauve, yellow brown and orange brown, highly weathered and medium strength, the Dacite typically increases in rock strength and decrease in degree of weathering with depth

#### **Overflow Section Abutment Foundations**

- 0.0m to 0.4m depth FILL Gravelly sandy CLAY
- 0.4m to 13.0m depth HW to SW ROCK DACITE: fine to medium grained, blue and mauve with green epidote veins, highly to moderately weathered, medium to very high strength, the Dacite typically increases in rock strength and decrease in degree of weathering with depth

Laboratory testing of the Dacite rock cores was reported in Coffey (1985).

Unconfined compressive strength (UCS) testing of rock core samples was undertaken during the 1985 investigations, but the samples tested were not from the boreholes located in the weir foundations.

Although the reported test results were not located at the weir, it is considered that the results obtained may be useful in assessing the intact rock strength and deformation characteristic of the rock at the weir site.

Typically the UCS and modulus of elasticity (E) results for intact Dacite reported by Coffey (1985) indicate the following:

- Highly to moderately weathered Dacite:
  - UCS = 15 MPa;
  - E = 1650 MPa.
- Moderately weathered Dacite:
  - UCS = 40 MPa;
  - E = 5000 MPa.
- Moderately to slightly weathered Dacite:
  - UCS = 75 to 200 MPa;
  - E = 10000 to 13000 MPa.

Point load testing of the rock cores from the weir foundations has been reported in Coffey (1985). These point load test results are summarised in Table 2.01.

| вн   | Sample Depth   | Material Description                                                                          | ls(50)   | Classification             |
|------|----------------|-----------------------------------------------------------------------------------------------|----------|----------------------------|
| BH11 | 1.90m to 2.00m | Dacitic TUFF: Fine to medium grained, mauve, moderately to slightly weathered                 | 5.5 MPa  | Very High<br>Strength      |
| BH11 | 6.10m to 6.20m | Dacitic TUFF: fine to medium grained,<br>mauve slightly weathered                             | 8.0 MPa  | Very High<br>Strength      |
| BH12 | 3.20m to 3.25m | Rhyodacitic TUFF: fine to medium grained, grey & orange brown, highly weathered               | 0.7 MPa  | Medium<br>strength         |
| BH12 | 3.75m to 3.80m | Dacitic TUFF: fine to medium grained, mauve, highly weathered                                 | 1.0 MPa  | Medium to<br>high strength |
| BH12 | 5.45m to 5.60m | Dacitic TUFF: fine to medium grained, mauve, slightly weathered                               | 8.0 MPa  | Very high strength         |
| BH15 | 2.90m to 3.00m | Rhyodacitic TUFF: fine to medium grained,<br>orange-brown and cream, highly<br>weathered      | 2.0 MPa  | High strength              |
| BH15 | 5.15m to 5.30m | Rhyodacitic TUFF: fine to medium grained,<br>orange-brown and cream, highly<br>weathered      | 1.0 MPa  | Medium to high strength    |
| BH15 | 7.10m to 7.15m | Rhyodacitic TUFF: fine to medium grained,<br>orange-brown and cream, highly<br>weathered      | 1.5 MPa  | High strength              |
| BH15 | 7.50m to 7.60m | Rhyodacitic TUFF: fine to medium grained,<br>orange-brown and cream, highly<br>weathered      | 1.8 MPa  | High strength              |
| BH15 | 8.50m to 8.55m | Rhyodacitic TUFF: fine to medium grained,<br>orange-brown and cream, highly<br>weathered      | 2.0 MPa  | High strength              |
| BH15 | 9.15m to 9.30m | Rhyodacitic TUFF: fine to medium grained,<br>orange-brown and cream, highly<br>weathered      | 2.7 MPa  | High strength              |
| BH16 | 3.00m to 3.30m | Dacitic TUFF: fine to medium grained,<br>mauve, moderately weathered to slightly<br>weathered | 6.0 MPa  | Very high<br>strength      |
| BH16 | 5.40m to 5.55m | Dacitic TUFF: fine to medium grained, mauve, highly weathered                                 | 0.75 MPa | Medium<br>strength         |

### Table 2.01 – Summary of Relevant Point Load Tests from Coffey 1985 Report

The results in Table 2.01 indicate that rock strength varies from medium strength to very high strength.

Copies of the relevant Coffey (1985) borehole logs, together with the UCS and Point Load test results are provided in Appendix 2.02.

Coffey (1985) also provides the earthfill material specification and design soil grading envelopes that were adopted for the construction of the embankment sections of the

weir. Copies of the Coffey (1985) embankment material design grading envelopes are provided in Appendix 2.03.

# 2.3.3 Coffey (1987) Geological Mapping

Geological mapping was undertaken at the time of the weir construction. It is understood that this mapping was undertaken to obtain a construction record of the geological foundation conditions for the concrete section of the weir structure. A copy of the geological map prepared as part of the mapping was not made available in the PDF copy of Coffey (1987) report provided to SMEC.

The areas where mapping was undertaken comprise:

- Weir embankment foundations;
- Cut-off trench;
- Labyrinth wall and wing wall foundations; and
- Left abutment sewer trench cut-off.

The rock observed in the foundations during the mapping is described by Coffey (1987) as:

"...dacite of the lower Silurian age Deakin Volcanics unit. Extremely to highly weathered dacite is yellow-brown, to grey-brown and the moderately weathered to slightly weathered dacite is purple-brown, grey-brown and blue-grey. The rock has porphyritic texture with crystals of quartz and feldspar to about 5mm size. Quartz, epidote, zeolite and chlorite veins to widths of about 10mm occur throughout the rock mass".

It is reported in Coffey (1987) that the foundations where concrete was placed comprise predominately moderately to slightly weathered rock with extremely to highly weathered materials associated with faulting and shears zones or zones of hydrothermal alteration.

Stereographic projections of rock joint defects are presented by Coffey (1987). Three principal joint sets were reported for the weir site, namely:

- Joint set 1 = dipping 80 to 90 towards 130 to 150 degrees;
- Joint set 2 = dipping 65 to 90 degrees towards 240 to 250 degrees; and
- Joint Set 3 = dipping 20 to 50 degrees towards 070 to 090 degrees;

A copy of the Coffey (1987) report, which includes the stereonet plots and photographs of the foundations, is attached in Appendix 2.04.

#### 2.3.4 Jacobs/SKM 2014 Risk and Options Assessment

As part of the Risk and Options Assessment Study by Jacobs/SKM (2014), geotechnical drilling investigations were undertaken. Details regarding these investigations are presented in Jacobs/SKM (2014).

The drilling investigations were undertaken in December 2013 and comprised:

• 6 boreholes using auger drilling techniques;

- SPT testing within the boreholes;
- Vane shear testing undertaken within U63 tubes; and
- Laboratory testing of disturbed soil samples.

The location and depth of the boreholes are summarised here in Table 2.02. Drawing 3002402-00-300-2001 attached in Appendix 3.03 shows the location Jacobs/SKM boreholes.

| вн            | Location                       | Easting | Northing | EL      | Depth |
|---------------|--------------------------------|---------|----------|---------|-------|
| SKM-<br>BH01  | RH Embankment – Crest          | 318491  | 5835404  | 577.235 | 6.8   |
| SKM-<br>BH02A | LH Embankment – Crest          | 318644  | 5835415  | 577.715 | 1.2   |
| SKM-<br>BH02B | LH Embankment – Crest          | 318644  | 5835415  | 577.715 | 8.8   |
| SKM-<br>BH03  | RH Embankment toe              | 318674  | 5835153  | 573.865 | 2.9   |
| SKM-<br>BH04  | LH Embankment – Crest<br>outer | 318718  | 5835023  | 577.955 | 4.9   |
| SKM-<br>BH05  | RH Embankment – Crest<br>outer | 318582  | 5835021  | 577.780 | 6.5   |

 Table 2.02 – Summary Jacobs/SKM Borehole Details

Typically the Jacobs/SKM boreholes were drilled through materials comprising:

- Zone 2 general semi-impervious fill material;
- Zone 1 impervious clay core and key trench fill material; and
- Refusal of auger drilling on bedrock.

In borehole SKM-BH03, it is reported that Zone 3 filter material was encountered at the toe of the right hand embankment. This filter material is overlying natural soil, which overlies the Dacite bedrock.

Copies of the Jacobs/SKM borehole logs are provided in Appendix 2.05.

Samples of the soil materials obtained from the boreholes were submitted for laboratory testing. The laboratory testing comprised:

- Moisture Content;
- Atterberg Limits;
- Particle size distribution with hydrometer;
- Emerson Classification; and

Bulk Density.

A summary of the results of these laboratory tests is provided in Table 2.03.

Copies of the laboratory test certificates extracted from Jacobs/ SKM (2014) are provided in Appendix 2.06.

#### Table 2.03 – Summary Jacobs/SKM Laboratory Testing Results

| вн            | Depth         | Material<br>Zone | MC % | Dry<br>Density | LL % | PL % | Emerson Class      |            | Gravel<br>% | Sand % | <0.075mm % |
|---------------|---------------|------------------|------|----------------|------|------|--------------------|------------|-------------|--------|------------|
|               |               |                  |      |                |      |      | Distilled<br>Water | Pond Water |             |        |            |
| SKM-<br>BH01  | 1.5 –<br>1.91 | Zone 1           | 23.3 | 1.64           | 82   | 58   | 2                  | 5          | 8           | 26     | 66         |
| SKM-<br>BH01  | 3.5 –<br>3.94 | Zone 1           | 27.2 | -              | 74   | 50   | 2                  | 5          | 7           | 18     | 75         |
| SKM-<br>BH02B | 1.2           | Zone 2           | 11.3 | -              | -    | -    | 2                  | 5          | 29          | 40     | 31         |
| SKM-<br>BH02B | 5.5 –<br>5.95 | Zone 1           | 29.1 | 1.5            | 78   | 54   | 2                  | 5          | 5           | 26     | 69         |
| SKM-<br>BH03  | 1.5           | Zone 3           | -    | -              | -    | -    | -                  | -          | 20          | 48     | 32         |
| SKM-<br>BH03  | 2.0 –<br>2.3  | Alluvial<br>soil | 10.7 | -              | 28   | 13   | -                  | -          | 16          | 43     | 41         |
| SKM-<br>BH04  | 1.5           | Zone 2           | 10   | -              | -    | -    | -                  | -          | 17          | 43     | 40         |
| SKM-<br>BH05  | 2.0 –<br>2.5  | Zone 2           | 7.1  | -              | -    | -    | 3                  | 5          | 31          | 46     | 23         |
| SKM-<br>BH05  | 4.3 –<br>4.74 | Zone 1           | 16.8 | 1.83           | 39   | 25   | 2                  | 5          | 7           | 45     | 48         |

These results indicate the embankment material properties typically comprise:

- Zone 1:
  - Medium to high plasticity sandy CLAY;
  - Greater than nominally 50% passing 0.075mm(fines);
  - Dispersive in distilled water but not dispersive in pond water;
  - Insitu moisture content in the range of nominally 20% to 30%.
- Zone 2:
  - Gravelly Clayey SAND;
  - Greater than nominally 30% passing 0.075mm(fines); and
  - Insitu moisture content of 7% to 12%.

# 1034

ACT Government – Shared Services Procurement | Isabella Weir Upgrade Design

- Zone 3:
  - Gravelly SAND with some silt and clay; and
  - Nominally 30% passing 0.075mm (fines) and 20% passing 0.002mm (CLAY).

# **3.SMEC SITE INVESTIGATIONS**

# 3.1 General

As part of the detailed design of the Isabella Weir Upgrade Design, site investigations were undertaken. The scope of the site investigations comprised:

- Site survey;
- Potholing of underground services; and
- Geotechnical investigations comprising:
  - Test pit excavations in the crest of the flanking embankments;
  - Test pit excavations at the end of the concrete return walls;
  - Test pit excavation at the upstream toe of embankment; and
  - Laboratory testing of representative soil samples.

The results of the site investigations were used to:

- Develop a site topographic plan;
- Provide details on the levels and nominal depth of the gas main and associated Telstra conduit services that traverse through the site;
- Identify the nominal level of rock along the upstream toe of the weir embankment;
- Confirm the nominal depth to the Zone 1 clay core below the weir crest;
- Obtain soil samples of Zone 1 and Zone 2 materials and undertake associated laboratory testing and classification of embankment materials; and
- Assess the potential presence of adversely orientated joint defects in the foundation of the weir.

# 3.2 Conduct of Investigations

#### 3.2.1 Site Survey

SMEC engaged local survey Leach-Steger to provide survey of the site. The survey provided covers an area approximately 200m by 200m, extending from the west side of Drakeford Drive, incorporating the weir and approach channel, the creek and adjacent banks downstream of the weir. The survey is based on the SGC/AGC grid, which is the local survey grid used for municipal development in the ACT. All levels are to Australian Height Datum (AHD).

The survey model provides the following:

- Topographical details;
- Alignment of overhead and underground services;
- Location of roads and access tracks;

- Location of dam monitoring instrumentation;
- Details of the vegetation; and
- Structure features of the weir.

It should be noted that magnetic north is approximately 12° east of grid north.

A copy of the survey plan of the site is provided in Appendix 3.01.

### 3.2.2 Potholing of Services

Following the construction of the weir, a 200mm diameter gas main was installed through both flanking embankments for the weir, and across the creek channel downstream of the weir. As part of the gas main installation, telecom (Telstra) cables were also installed in a separate conduit adjacent to the gas main.

Potholing of the gas main was undertaken in January 2015 by Leach-Steger to determine the depth at which the services have been installed.

A total of 16 potholes were excavated by vacuum excavation/non-destructive digging methods to expose both the Telstra and gas main conduits. The services conduits were observed to comprise:

- Gas main yellow 200mm diameter steel pipe; and
- Telstra white 2 x 100mm to 110mm diameter PVC pipe.

A summary of the potholing results is provided in Table 3.01, which includes:

- Eastings and northings of the pothole locations;
- Depths, in metres, to the top of the conduits below existing ground surface; and
- Elevation of the top of the service conduits

A copy of the report on the potholing survey is provided in Appendix 3.02. The locations of the potholes are shown on the geotechnical investigations location plan, drawing number 3002402-00-300-2001. A copy of this drawing is included in Appendix 3.03.

| Pothole<br>No. | Conduit                       | Easting    | Northing   | Depth | Surveyed EL<br>Top of<br>conduit |
|----------------|-------------------------------|------------|------------|-------|----------------------------------|
| 1.0            | Gas Main – Steel 200mm        | 206037.812 | 588132.526 | 0.9m  | EL576.107                        |
| 1.1            | Telstra – PVC – 2 x 110mm     | 206037.748 | 588132.620 | 0.72m | EL576.254                        |
| 2.0            | Gas Main – Steel 200mm        | 206021.802 | 588122.231 | 1.00m | EL576.538                        |
| 2.1            | Telstra – PVC – 2 x 110mm     | 206021.813 | 588122.185 | 0.89m | EL576.663                        |
| 3.0            | Gas Main – Steel 200mm        | 206008.496 | 588113.371 | 1.03m | EL575.393                        |
| 3.1            | Telstra – PVC – 2 x 110mm     | 206008.499 | 588113.372 | 0.81m | EL575.611                        |
| 4.0            | Gas Main – Steel 200mm        | 205978.631 | 588094.010 | 0.65m | EL574.876                        |
| 5.0            | Gas Main – Steel 200mm        | 205966.034 | 588109.480 | 0.95m | EL571.084                        |
| 6.0            | Gas Main – Steel 200mm        | 205942.782 | 588148.729 | 1.25m | EL569.235                        |
| 7.0            | Gas Main – Polyethylene 200mm | 205931.604 | 588154.101 | 0.80m | EL571.190                        |
| 8.0            | Gas Main – Steel 200mm        | 205918.112 | 588171.447 | 0.90m | EL573.029                        |
| 8.1            | Telstra – PVC – 2 x 100mm     | 205917.550 | 588171.644 | 0.60m | EL573.298                        |
| 9.0            | Gas Main – Steel 200mm        | 205932.033 | 588185.469 | 0.85m | EL573.581                        |
| 9.1            | Telstra – PVC – 2 x 100mm     | 205932.035 | 588185.468 | 0.55m | EL573.860                        |
| 10.0           | Gas Main – Steel 200mm        | 205952.186 | 588205.248 | 1.40m | EL576.361                        |
| 10.1           | Telstra – PVC – 2 x 100mm     | 205952.122 | 588205.330 | 0.85m | EL576.883                        |

# 3.2.3 Test Pit Excavations

Test pit excavations were undertaken in the embankment over the period of 18<sup>th</sup> to 19<sup>th</sup> of March 2015. A total of 10 test pits, designated TP01 to TP10, were excavated in the earthfill materials of the embankment sections of the weir. The test pits were excavated using a 21 tonne excavator, Hyundai 210LC-7 model, with a 1.2m wide ripper toothed bucket. The excavations were undertaken in the full-time presence of a senior geotechnical engineer from SMEC.

Details of the test pit excavations are summarised in Table 3.02, which includes:

- Test pit number;
- Test pit location with respect to the weir;
- Chainage of the test pit, with respect to original crest set out control line;
- Easting and northing of the upstream limit of the test pit excavations;
- Depth of test pit; and
- Test pit dimensions.

### ACT Government – Shared Services Procurement Isabella Weir Upgrade Design

| TP No. | Location                                                                               | Chainage<br>Pt 7 to Pt 6 | Easting   | Northing  | Max.<br>Depth | Size<br>Length x width |
|--------|----------------------------------------------------------------------------------------|--------------------------|-----------|-----------|---------------|------------------------|
| TP01   | Left embankment, left abutment                                                         | _                        | 206071.40 | 588058.30 | 2.4m          | 5.5m x 1.4m            |
| TP02   | U/S toe of left embankment                                                             | 57.5m                    | 206037.20 | 588113.60 | 3.2m          | 6.5m x 1.4m            |
| TP03   | Left embankment across crest                                                           | 64.0m                    | 206030.24 | 588116.62 | 3.7m          | 6.9m x 1.4m            |
| TP04   | Left side end of concrete return wall, U/S of left embankment                          | 87.0m                    | 206018.70 | 588136.14 | 3.6m          | 4.7m x 1.4m            |
| TP05   | Left embankment across crest                                                           | 93.5m                    | 206010.56 | 588138.46 | 4.5m          | 8.5m x 1.4m            |
| TP06   | Right embankment across crest                                                          | 156.0m                   | 205971.11 | 588187.49 | 3.3m          | 10.5m x 1.4m           |
| TP07   | Right side of concrete return wall U/S of right embankment                             | 171.0m                   | 205965.02 | 588203.44 | 4.8m          | 6.2m x 1.4m            |
| TP08   | Right embankment across crest at<br>location of the R/H end of Zone 1<br>clay core     | 188.5m                   | 205950.37 | 588208.05 | 2.0m          | 6.0m x 1.4m            |
| TP09   | U/S side of the right embankment<br>between concrete return wall and<br>right abutment | 177.5m                   | 205963.54 | 588205.55 | 4.0m          | 5.5m x 1.4m            |
| TP10   | U/S side of the abutment of the right embankment                                       | 195.5m                   | 205952.10 | 588218.90 | 1.4m          | 5.5m x 1.4m            |

#### Table 3.02 – Summary of 2015 Test Pit Excavations

The location of the upstream end of each of the test pits is shown on the plan of the geotechnical investigations drawing number 3002402-00-300-2001. A copy of this drawing is provided in Appendix 3.03.

The test pit locations were initially measured using a hand held GPS with an accuracy of +/-5m. The positions of the pits were also measured using a tape and compass relative to the crest of the embankment and the weir concrete training walls to more accurately locate the test pits relative to the weir structures.

The elevation of the test pits were estimated from the 0.2m topographical survey contours.

Each of the test pits was logged, sketched and photographed by SMEC's Senior Geotechnical Engineer. Copies of the test pit logs, sketches and photographs are included in Appendix 3.04.

Bulk soil samples of the representative materials encountered in the test pit excavations were obtained. Undisturbed soil samples were obtained from the top of the Zone 1 clay core material in test pits TP03 and TP06 using a U-50 tube. The U-50 tube samplers were driven using force applied by the excavator bucket. Some damage to the ends of the steel tubes occurred but it was assessed that the damage to the tube was limited in extent and would not impact on the undisturbed nature of the sample within the body of the tube.

The test pit excavations were reinstated by backfilling the pit with the excavated spoil in lifts of nominally 300mm, then achieving compaction of the layer using a vibrating compaction plate that was attached to the excavator.

### 3.2.4 Geological Mapping

Geological mapping of rock exposures on the left and right hand side of the creek downstream of the weir was undertaken on the 19<sup>th</sup> of March 2015. Measurements of the orientation and characteristic features of rock joint defects were taken using a tape and geological compass.

The location of the rock exposures where mapping was undertaken is indicated in drawing 3002402-00-300-2001, a copy of which is presented in Appendix 3.03.

# 4. GEOTECHNICAL INVESTIGATION RESULTS

#### 4.1.1 General

The results of the SMEC geotechnical investigations undertaken for the project are presented below as follows:

- Test pits in the crest of the embankment;
- Test pits in the upstream toe of the embankment;
- Laboratory testing results; and
- Downstream geological mapping.

#### 4.1.2 Results of Test Pits in Crest of Embankment

Test pit were excavated across crest of the weir embankment to confirm the zoning of material in the upper section of the embankment. These test pits were designated:

- Left embankment:
  - TP01
  - TP03
  - TP05
- Right embankment:
  - TP06
  - TP08

The sketches of the observed distribution of materials within the test pits included in Appendix 3.04 graphically represent the distribution of materials observed in these test pits.

Sub-surface conditions observed in the test pits excavated in the crest of the embankments are summarised in Table 4.01 and Table 4.02, which detail:

- Depth below ground level;
- Description of materials encountered directly beneath the crest of the embankment; and
- Description of materials encountered on the upstream flank of the clay core.

| Depth (m BGL) | Material Below Crest                                                                                                                                                                                                      | Material Upstream of Crest                                                               |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| 0.0m to 0.2   | Sandy SILT [TOPSOIL]: Light brown with gras                                                                                                                                                                               | s roots                                                                                  |  |  |  |
| 0.2m to -1.5m | Silty Gravelly CLAY and Clayey SAND [FILL]: Brown grey, low plasticity with fine grained sand, gravel and some cobbles, material has been placed in layers and typica dense to very dense and dry (Zone 2 – General Fill) |                                                                                          |  |  |  |
| 1.5m to 4.5m  | Silty Sandy CLAY [FILL]: Grey green to yellow, medium to high plasticity, very stiff, moist to wet, (Zone 1 – Clay Core Fill)                                                                                             | Silty Gravelly CLAY and Clayey SAND<br>[FILL]: Same as above, (Zone 2 –<br>General Fill) |  |  |  |

### Table 4.01 – Sub-surface Conditions Below Crest of Left Embankment

### Table 4.02 – Sub-surface Conditions Below Crest Right Embankment

| Depth (m BGL) | Material Below Crest                                                                                                                                                                                                          | Material Upstream of Crest                                                               |  |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0.0m to 0.2   | Sandy SILT [TOPSOIL]: Light brown with grass roots                                                                                                                                                                            |                                                                                          |  |  |  |  |  |
| 0.2m to 1.3m  | Silty Gravelly CLAY and Clayey SAND [FILL]: Brown grey, low plasticity with fine grained sand, gravel and some cobbles, material has been placed in layers and typically dense to very dense and dry, (Zone 2 – General Fill) |                                                                                          |  |  |  |  |  |
| 1.3m to 3.3m  | Silty Sandy CLAY [FILL]: Grey green to yellow, medium to high plasticity, very stiff, moist to wet, (Zone 1 – Clay Core Fill)                                                                                                 | Silty Gravelly CLAY and Clayey SAND<br>[FILL]: Same as above, (Zone 2 –<br>General Fill) |  |  |  |  |  |

In general terms beneath the crest of the test pits a layer of Zone 2 material comprising Silty gravelly CLAY to Clayey SAND was observed to be overlying Zone 1 Silty CLAY.

Variation from the general crest arrangement described in Table 4.01 and Table 4.02 was observed in test pits TP01 and TP08. These test pits were nominally excavated near the left abutment of the left embankment and right abutment of the right embankment, respectively.

The subsurface conditions encountered in TP01, excavated on the left abutment of the embankment, is summarised in Table 4.03. Notably, this test pit encountered an old road pavement below an initial cover of fill comprised Silty sandy CLAY. Material that could be considered to represent Zone 1 clay core material was not observed in the embankment at the location of TP01.

| Depth (m BGL) | Material Description                                                                                                           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|
| 0.0m to 0.2   | Sandy SILT [TOPSOIL]: Light brown with grass roots                                                                             |
| 0.2m to 0.7m  | Sandy Silty CLAY and Clayey GRAVEL mix [FILL]: Yellow brown, very dense fill, (Zone 2 – General Fill)                          |
| 0.7m to 0.8m  | Road Pavement: Bitumen seal and road base material                                                                             |
| 0.8m to 1.7m  | Sandy silty CLAY [Residual]: Mottled orange grey with some iron staining                                                       |
| 1.7m to 2.4m  | <b>DACITE [BEDROCK]:</b> Mottled yellow and grey, medium grained, extremely to highly weathered, extremely low to low strength |

Table 4.03 – Sub-surface Conditions in Test Pit TP01 at Crest of Left Abutment

The conditions TP08, which was excavated near the right abutment of the right embankment, is summarised in Table 4.04. Notably, this test pit encountered the right hand end of the Zone 1 clay core. At this location highly weathered Dacite rock was encountered below the Zone 1 clay core material on the right hand side of the pit at nominally 1.4m depth below the crest of the weir.

| Depth (m BGL) | Material Description                                                                                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0.0m to 0.2   | Sandy SILT [TOPSOIL]: Light brown with grass roots Topsoil                                                                          |
| 0.2m to 1.3m  | Sandy Silty CLAY [FILL]: Brown grey, hard with some gravel, (Zone 2 – General Fill)                                                 |
| 1.3m to 1.9m  | Silty Sandy CLAY [FILL]: Grey green to yellow, medium to high plasticity, very stiff, moist to wet, (Zone 1 – Clay Core Fill)       |
| 1.9m to 2.0m  | <b>DACITE [BEDROCK]:</b> Brown with white speckles, fine grained, extremely to highly weathered, extremely low to very low strength |

# 4.1.3 Results of Test Pits in Upstream Toe of Embankment

Test pit excavations were undertaken along the upstream toe of the weir embankments. The purpose of these excavations was to confirm the nominal depth to rock and the materials overlying the rock.

The test pits excavated at the upstream toe of the embankment comprised:

- Left embankment:
  - TP02
  - TP04
- Right embankment:
  - TP07
  - TP09
  - TP10

Sketches of these test pits are included in Appendix 3.04 to graphically represent the distribution of materials observed in these test pits.

Variable subsurface conditions were observed in the two test pits, TP02 and TP04, excavated at the upstream toe of the left embankment. The results of these test pits are summarised in Table 4.05 and Table 4.06 respectively. These tables show:

- Depth below ground level; and
- Description of materials encountered at the upstream toe of the embankment.

Table 4.05 – Sub-surface Conditions in TP02 at Upstream Toe of Left Embankment

| Depth (m BGL) | Material Description                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------|
| 0.0m to 0.2m  | Sandy SILT [TOPSOIL]: Light brown with grass roots Topsoil                                                      |
| 0.2m to 2.0m  | Sandy Silty CLAY [FILL]: Brown grey, hard with some gravel, (Zone 2 - General Fill)                             |
| 2.0m to 2.6m  | Sandy Gravelly CLAY [RESIDUAL]: Dark grey brown, low plasticity, moist, hard                                    |
| 2.6m to 3.0m  | <b>Dacite [BEDROCK]:</b> Yellow grey with white specks, extremely weathered, extremely low to very low strength |
| 3.0m to 3.2m  | Dacite [BEDROCK]: grey purple with white specks, highly weathered, low strength                                 |

#### Table 4.06 – Sub-surface Conditions in TP04 at Left End of Concrete Return Wall

| Depth (m BGL) | Material Description                                                                                          |
|---------------|---------------------------------------------------------------------------------------------------------------|
| 0.0m to 0.2m  | Sandy SILT [TOPSOIL]: Light brown with grass roots Topsoil                                                    |
| 0.2m to 2.3m  | Sandy Silty CLAY [FILL]: Brown grey, hard with some gravel, (Zone 2 - General Fill)                           |
| 2.3m to 3.5m  | Silty Gravelly SAND [FILL – crusher dust]: Green grey, coarse grained poorly graded with some gravel and silt |
| 3.5m to 3.6m  | Dacite [BEDROCK]: Pink grey , highly to moderately weathered, medium to high strength                         |

The test pit TP04 is located on the upstream toe of the embankment adjacent to the ends of the left hand concrete weir return wall. In this test pit green grey Silty Gravelly SAND was encountered between 2.3m and 3.5m depth in TP04. This material is interpreted to be a crusher dust quarry sand type product. Fill material comprising Silty Gravelly SAND with clay was observed to be overlying the crusher dust sand. The overlying fill material is considered to have been derived compaction of residual or extremely weathered Dacite, which has been placed and compacted in the embankment toe as Zone 2 material.

TP07 and TP09 are located on the upstream toe of the right embankment adjacent to the ends of the concrete weir return wall. At the right hand end of the right concrete return wall Silty Gravelly SAND (crusher dust) material was encountered in test pit TP07 at a depth of 3.0m to 3.8m. Fill comprising Gravelly Clayey SILT was observed to be overlying the crusher dust sand.

Underlying the crusher dust sand, high plasticity silty CLAY was observed in these test pits, with Dacite rock observed to be underlying the clay.

The Silty CLAY material in TP07 and TP09 was observed to be similar to the Zone 1 clay core material observed in test pits TP06 and TP08. It is noted that the test pits TP07 and TP09 are located in the area where the diversion channel used to divert creek flows around the weir site during construction of the weir as shown on the W.A.E. drawing W.A.E.88/12423. It is considered that the Silty CLAY encountered in these test pits is Zone 1 material that was used to back fill the diversion channel as indicated on the drawing.

Test pit TP10 was excavated near where the toe of the right hand embankment meets the right abutment. This test pit excavation encountered extremely weathered Dacite at 0.4m depth. The test pit was excavated to 1.4m depth through 0.7m of extremely weathered Dacite and then a further 0.3m into highly weathered Dacite.

Rock joint defects were observed in test pit TP10 and measured using a geological compass. The orientation of the joint sets measured in TP10 comprises:

- 30° to 36° dip angle and 085° to 088° dip direction; and
- 85° dip angle and 150° dip direction.

The observed or interpreted depth and elevation of bedrock along the upstream toe of the embankment of the rock where encountered in the test pits is summarised in Table 4.07.

| Test Pit |       | EW Dacite |       | HW Dacite |  |  |  |
|----------|-------|-----------|-------|-----------|--|--|--|
|          | Depth | Elevation | Depth | Elevation |  |  |  |
| TP01     | 1.7m  | 576.3m    | 2.0m  | 576.0m    |  |  |  |
| TP02     | 2.6m  | 574.8m    | 3.0m  | 574.4m    |  |  |  |
| TP04     |       |           | 3.5m  | 573.5m    |  |  |  |
| TP07     |       |           | 4.8m* | 572.3m*   |  |  |  |
| TP09     | 3.0m  | 574.0m    | 3.9m  | 573.1m    |  |  |  |
| TP10     | 0.4m  | 577.3m    | 1.1m  | 576.6m    |  |  |  |

Table 4.07 – Rock levels Observed along Upstream Toe of Embankments

\*Interpreted to be HW rock to be at the base of the test pit TP07 but due to the limit of the excavator the rock level indicated was not confirmed by the observation of the excavated spoil

The bed rock levels detailed in Table 4.07 indicate that the rock levels decrease from the abutments of the embankment towards the creek. It is also observed that the thickness of extremely weathered overlying highly weathered Dacite is in the range of 0.3m to 0.9m. Extremely weathered Dacite rock was not encountered in the test pits at the ends of the concrete weir return walls. It is considered that the extremely weathered rock was removed at the locations of test pits TP04 and TP07 during foundation preparation works for construction of the weir.

# 4.1.4 Seepage Water Observations

Seepage water inflow into the test pit excavations was observed in a number of test pits. The location, depth and level of the observed seepage water inflows comprise:

- TP04 at 3.2m (EL573.8m);
- TP05 at 4.0m (EL573.45m);
- TP07 at 3.0m (EL574.1m); and
- TP09 at 3.0m (EL574.1m).

### 4.1.5 Laboratory Testing Results

Representative bulk samples and undisturbed tube samples were submitted for laboratory testing. The testing schedule was developed to provide soil classification of grading, plasticity, dispersive characteristics and shear strength. These tests comprised:

- Moisture content;
- Atterberg Limits and linear shrinkage;
- Particle size distribution with hydrometer;
- Standard Compaction (MDD & OMC);
- Emerson Classification;
- Pinhole Dispersion; and
- Consolidated undrained with pore pressure measurement triaxial test (CUPP).

Copies of the laboratory testing certificates are included in Appendix 4.01. The results of the laboratory testing are summarised in Table 4.08. This table details:

- Test pit number;
- Depth of sample;
- Interpreted embankment material zone;
- Field Moisture content (MC %);
- Maximum dry density (MDD t/m<sup>3</sup>);
- Optimum moisture content (OMC %);
- Liquid limit (LL %);
- Plastic limit (PL %);
- Linear shrinkage limit (LS %);
- Emerson Class;
- Percent dispersion;
- Gravel sized fraction of the soil sample (Gravel %);
- Sand sized fraction of the soil sample (Sand %); and

Silt and Clay sized fraction of the soil sample (<75µm %);</li>

| TP No.           | Depth          | Interpreted<br>Material | MC<br>% | MDD<br>t/m³ | ОМС<br>% | LL<br>% | PL<br>% | LS % | Emerson<br>Class   | Pinhole<br>Dispersion | Gravel<br>% | Sand % | <75µm<br>% |
|------------------|----------------|-------------------------|---------|-------------|----------|---------|---------|------|--------------------|-----------------------|-------------|--------|------------|
|                  |                | Zone                    |         |             |          |         |         |      | Distilled<br>Water | -                     |             |        |            |
| TP03             | 1.5m-<br>1.8m  | Zone 1                  | 19.5    |             |          | 71      | 22      | 17.5 | 2                  | D1                    | 2.1         | 19.8   | 78.1       |
| TP03             | 1.6m-<br>1.9m  | Zone 1                  |         | 1.63        | 21.8     | 72      | 19      | 15   | 1                  |                       | 5.2         | 29.2   | 65.6       |
| TP04             | 2.3m-<br>2.6m  | Zone 3                  | 18.7    |             |          |         |         |      |                    |                       | 19          | 52.8   | 28.7       |
| TP05<br>(U/S)    | 1.5m-<br>2.5m  | Zone 2                  |         | 1.982       | 11.1     | 40      | 13      | 10   | 1                  |                       | 22          | 49     | 29         |
| TP05<br>(D/S)    | 1.5m-<br>2.5m  | Zone 1                  |         | 1.576       | 23.2     | 75      | 21      | 16   | 1                  |                       | 7.5         | 22     | 70.5       |
| TP06             | 0.5m-<br>1.0m  | Zone 2                  |         | 1.976       | 10.9     | 29      | 12      | 6    | 1                  |                       | 17.1        | 48.5   | 34.4       |
| TP06<br>(Centre) | 1.0m-<br>1.6m  | Zone 1                  |         | 1.688       | 19.5     | 71      | 19      | 15.5 | 1                  |                       | 6.2         | 31.5   | 62.3       |
| TP06             | 1.6m-<br>1.95m | Zone 1                  | 21.6    |             |          | 64      | 19      | 13   | 2                  | D1                    | 5.9         | 32.9   | 61.2       |
| TP06<br>(U/S)    | 2.0m-<br>2.5m  | Zone 2                  |         | 2.05        | 9.9      | 27      | 13      | 7    | 4                  |                       | 35.5        | 43.7   | 20.8       |
| TP07             | 3.0m-<br>3.4m  | Zone 3                  | 12.9    |             |          |         |         |      |                    |                       | 32.2        | 43.2   | 24.6       |
| TP07             | 4.0m-<br>4.8m  | Zone 1                  |         | 1.668       | 19.7     | 68      | 20      | 16   | 1                  |                       | 4.9         | 29.3   | 65.8       |
| TP08             | 1.6m-<br>2.0m  | Zone 1                  |         | 1.655       | 20.8     | 69      | 20      | 16   | 1                  |                       | 4.8         | 27.7   | 67.5       |

Table 4.08 – Summary 2015 Test Pit Laboratory Testing Results

Plots of the grading curves from the test pit soil samples are provided in Figure 4.01, together with the designed embankment zone grading envelopes specified by Coffey (1985) for the embankment design.

The results of the Atterberg Limits tests for plasticity undertaken on the test pit soil samples are plotted on a Casagrande Chart in Figure 4.02.

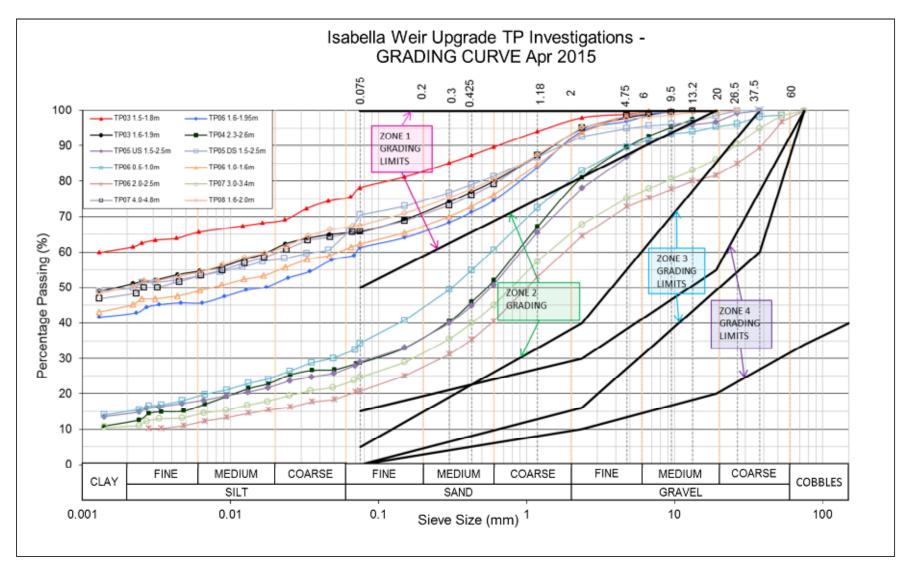



Figure 4.01 – Particle Size Distribution Grading Curves, with Design Grading Envelopes, SMEC 2015 Test Pits.

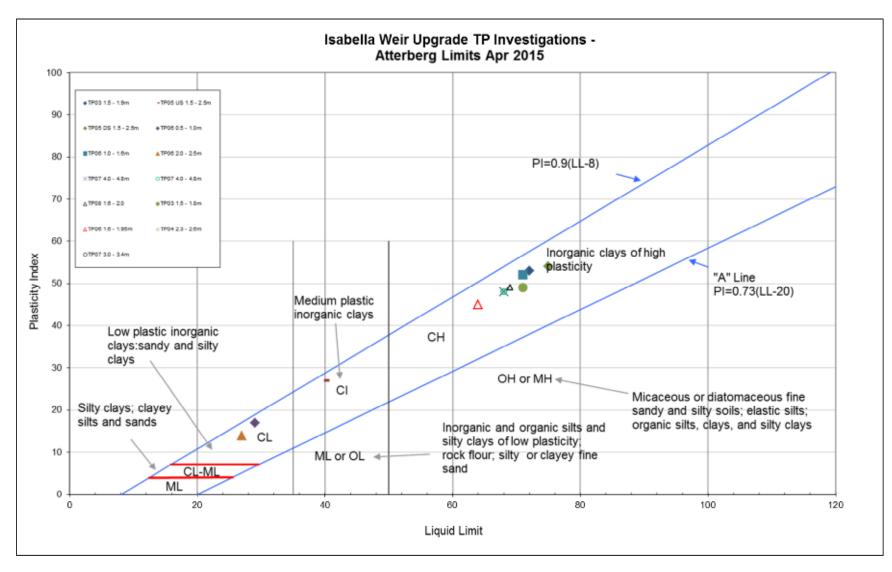



Figure 4.02 – Atterberg Limits from SMEC 2015 Test Pits

# 1049

Figure 4.01 indicates that the Zone 1 samples tested have a typical particle size distribution that meets the Coffey (1985) design grading envelope, with particle size distribution characteristics of:

- 50% passing 0.075mm sieve;
- 100% passing 19mm; and
- 40% and 60% is clay sized particles, <0.002mm.

The results of the Atterberg limit tests on the test pit samples presented in Figure 4.02 shows that the Zone 1 material is clay of high plasticity with:

- Liquid limit in the range of 60% to 80%; and
- Shrinkage limits in the range of 15% to 18%.

The dispersion characteristics of the Zone 1 materials have been classified as highly dispersive in distilled water. The Jacobs/SKM (2014) Emerson Class test results were undertaken in both distilled and pond water. These results indicated that the Zone 1 material is Emerson Class 5 when subjected to pond water. This variation in dispersive characteristics is possibly due to the salinity of the water in the Isabella Pond. Higher salinity water can restrict cat-ion exchange potential between the water and clay particles and hence restrict soil dispersion.

The particle size distribution of Zone 2 materials is shown in Figure 4.01. The results indicate that the Zone 2 materials tested generally met the Coffey (1985) design grading, although the soils tested deviate from the design grading in that a greater percentage of 2mm to 6mm sized soil particles was measured.

The grading of the Zone 2 material tested characteristically comprises:

- 20% to 80% of sand size particles, <2mm and >0.075mm;
- 20% and 35% is clay and silt size particles, <0.075mm size;
- 10% and 15% is clay size particles, <0.002mm size; and</li>
- Maximum particle size between 37mm and 75mm.

Dispersive characteristics of the Zone 2 materials tested indicate that it is dispersive to potentially dispersive in distilled water.

Zone 3 materials tested do not meet the design grading envelopes specified by Coffey (1985). The Zone 3 samples tested are significantly finer than the design grading and generally fit within the Zone 2 design grading envelope. The grading of the Zone 3 samples obtained from the SMEC test pits on the upstream side of the weir are similar to the particle size distribution reported by Jacobs/SKM (2014) for samples of Zone 3 obtained from borehole BH03 located in the downstream toe of the embankment.

Standard compaction testing was undertaken on bulk samples of Zone 1 and Zone 2 materials obtained from the test pits. The results of these tests are presented in Figure 4.03.

The compaction characteristics of the Zone 1 test pit samples comprise:

### 1050

ACT Government – Shared Services Procurement Isabella Weir Upgrade Design

- Maximum Dry Density (MDD) in the range of 1.58t/m<sup>3</sup> to 1.68t/m<sup>3</sup>;
- OMC in the range of 19% to 25%; and
- OMC is slightly wet of plastic limit for this material.

The compaction characteristics of the Zone 2 test pit samples comprise:

- Maximum Dry Density (MDD) in the range of 1.98t/m<sup>3</sup> to 2.05t/m<sup>3</sup>;
- OMC in the range of 9.9% to 11.1%; and
- OMC is typically 1% to 2 % dry of the plastic limit for this material.

Undisturbed U-50 tube samples of Silty CLAY material were obtained from test pits TP03 and TP06. The tube samples were taken from the zone of the embankment that is considered to be Zone 1 impervious clay core material. These undisturbed samples were submitted for consolidated undrained triaxial tests with pore pressure measurement, (CUPP). The results of the effective shear strength testing are provided on a p'q plot in Figure 4.04.

The effective shear strength and deformation characteristics of the Zone 1 material based upon these triaxial test results comprise:

- Effective shear strength, c' = 2 kPa; φ' = 27°
- Young Modulus, E'<sub>(tangent)</sub> = 37,500kPa

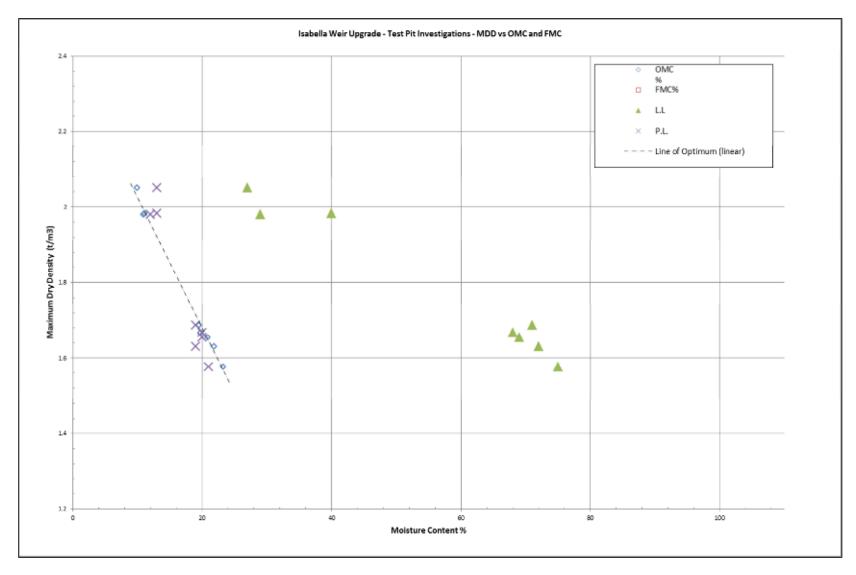



Figure 4.03 – Results of Compaction Testing, SMEC 2015 Test Pits

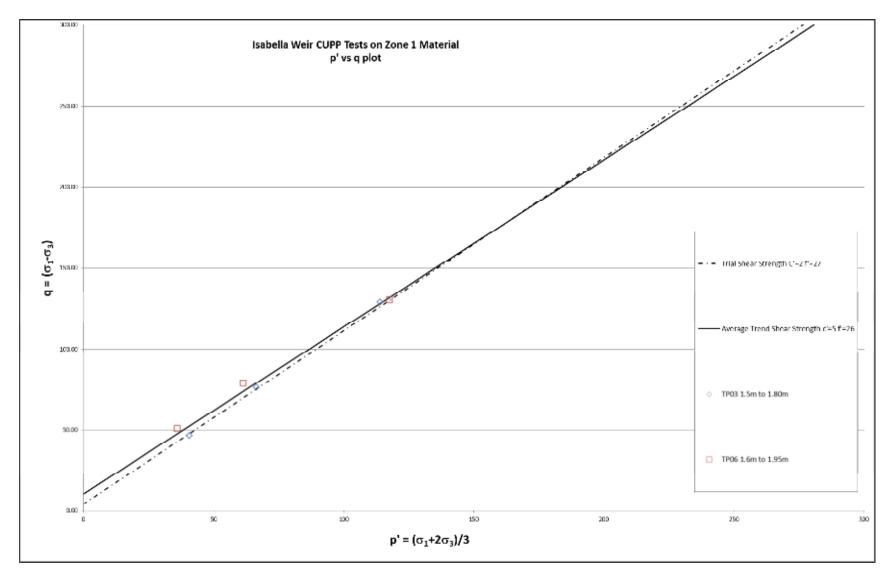



Figure 3.04 – p'q Plot of Consolidated Undrained Triaxial Testing Results

# 4.1.6 Results of Downstream Geological Mapping

Geological mapping of rock mass joint defects was undertaken on the rock exposures observed directly downstream of the left and right training walls. The measurement of the defect orientation, spacing and persistence was made by tape and geological compass. Observations of the surface characteristics of joint defect including roughness waviness and infill materials were made.

The results of the defect orientation data were plotted onto lower hemisphere pole plots. In general the results show that the principal joint sets interpreted from the stereonet pole plots comprise:

- Joint Set 1 Steeply dipping joints, with an angle of around 80° to 90°, dipping nominally towards the right abutment of the weir at 315°, (north-westerly direction).
- Joint Set 2 Moderate to steeply dipping joints with an angle of around 30° to 70°, dipping nominally downstream at 240°, (south-westerly direction); and
- Joint Set 3 Shallow dipping joints, with an angle of around 20° to 40°, dipping nominally upstream at 080°, (north-easterly direction);

Predominantly the observed continuity of the exposed jointing is in the order of 1m to 5m persistence. Perpendicular joint spacing between joints of the same set is observed to be in the order of 150mm to 500mm.

Typically, the observed surface condition of the rock joints is smooth, planar to undulating, with epidote and carbonate mineral veneers and infills.

Observations of the rock mass exposed directly downstream of the weir made by SMEC are typically in accordance with the rock mass characteristics described by Coffey (1987).

Copies of these stereonet pole plots are provided in Appendix 4.02 and are also presented on the Drawing 3002402-00-300-2001, a copy of which is included in Appendix 3.03.

# **5.INTERPRETED GEOTECHNICAL MODEL**

# 5.1 General

An interpreted geotechnical model for the embankment and the embankment foundations has been developed based upon the results of the geotechnical site investigations completed at the Isabella weir which comprise:

- Test pits TP01 to TP10 excavated by SMEC in March 2015;
- Boreholes logs provided in Jacobs/SKM (2014);
- Geological mapping provided in Coffey (1987); and
- Boreholes logs provided in Coffey (1985).

Aspects of the interpreted geotechnical model comprise:

- Geotechnical material units;
- Interpreted geotechnical design parameters;
- Interpretation of geological mapping; and
- Interpreted geotechnical long-section drawings.

The interpreted of the adopted geotechnical model has been used as a basis for the detailed design of the Isabella Weir Upgrade works.

# 5.2 Geotechnical Material Units

The terminology for the material units adopted in the geotechnical model for the Isabella Weir Upgrade Design are based on the terminology specified for the embankment design in Coffey (1985).

The geotechnical material units adopted in the geotechnical model comprise:

- **Topsoil** Sandy SILT: light brown with grass roots, typically only 0.2m thickness.
- Zone 1 Impervious Clay Core Silty Sandy CLAY: grey green to yellow, medium to high plasticity, very stiff, moist to wet.
- Zone 2 Semi Impervious General Fill Silty Gravelly CLAY and Clayey SAND: Brown grey, low plasticity with fine grained sand, gravel and some cobbles, dense to very dense, dry.
- Zone 3 Filter/Working Platform Material Silty gravelly SAND: green grey, coarse grained poorly graded sand with some gravel and silt, loose to medium dense, saturated.
- Residual Soil Silty Sandy/Gravelly CLAY: mottled orange grey to dark grey brown, low plasticity, hard.
- Bedrock DACITE: mauve, pink grey to yellow brown, highly to moderately weathered medium to high strength at the ends of the concrete return walls. Away from the concrete walls and the embankment core trench foundations, highly to moderately weathered Dacite is overlain by a thin cover of very low strength extremely weathered to highly weathered Dacite.

# 5.3 Interpreted Geotechnical Design Parameters

Interpretation of geotechnical design parameters has been undertaken based upon the laboratory test results and industry recognised correlations between material descriptions and the laboratory test results. The interpreted parameters recommended for design of the concrete weir retaining walls and weir embankments are summarised in Table 5.01, which provides:

- Unit name;
- Materials description;
- Maximum dry density (MDD in t/m<sup>3</sup>);
- Optimum moisture content (OMC %);
- Bulk unit weight ( $\gamma_{\text{bulk}}$  in t/m<sup>3</sup>);
- Effective shear strength, (cohesion = c' in kPa & friction angle =  $\phi$ ' °); and
- Ultimate bearing capacity (q<sub>ult</sub> in MPa).

#### Table 5.01 – Interpreted Geotechnical Design Parameters

| Unit<br>Name.     | Description                                                                 | MDD<br>(t/m³) | OMC<br>% | Bulk<br>Unit<br>Weight<br>(t/m³) | Effective<br>Stren | Ultimate<br>bearing<br>pressure |       |
|-------------------|-----------------------------------------------------------------------------|---------------|----------|----------------------------------|--------------------|---------------------------------|-------|
|                   |                                                                             |               |          |                                  | c,                 | φ'                              | (MPa) |
| Zone 1            | Impervious Clay Core<br>Fill – Silty Sandy<br>CLAY                          | 1.67          | 20       | 2.0                              | 2                  | 27                              | 0.5   |
| Zone 2            | Semi Impervious<br>General Fill – Silty<br>Gravelly CLAY and<br>Clayey SAND | 1.99          | 10       | 2.2                              | 5                  | 30                              | 1     |
| Zone 3            | Filter/Working<br>Platform Fill – Silty<br>gravelly SAND                    |               |          | 2.0                              | 0                  | 35                              |       |
| Residual<br>Soils | Silty Sandy/Gravelly<br>CLAY                                                |               |          | 1.9                              |                    |                                 | 1     |
| EW<br>Dacite      | Yellow brown with white speck                                               |               |          | 2.5                              |                    |                                 | 2     |
| HW<br>Dacite      | Yellow grey to purple grey                                                  |               |          | 2.5                              |                    |                                 | 15    |
| MW-SW<br>Dacite   | Purple grey                                                                 |               |          | 2.6                              |                    |                                 | 40    |

# 5.4 Interpreted Geotechnical Long-sections

Geotechnical long-sections drawings depicting the interpreted subsurface conditions along the weir alignment have been developed which comprise:

- Geological Section 1 Along Control Line Pt. 7 at Ch 0m to Pt. 6 at Ch 270m.
- Geological Section 2 Along upstream face of concrete return walls at 11.9m upstream of the Control Line.

Drawing 3002402-00-300-2201 presents both these geological sections. A copy of this drawing is provided in Appendix 3.03.

The interpreted geological sections are correlated with the design details presented on the original design drawings and show:

- Along the weir centreline (Geological Section 1):
  - the central overflow (labyrinth) section of the weir is founded on highly to slightly weathered Dacite;
  - the flanking embankments are also founded on highly to slightly weathered Dacite, and with Zone 1 material comprising the bulk of the embankment but with a "capping" layer of about 1m to 1.5m thickness of Zone 2 material extending the length of the embankment.
- Along the upstream face of the approach walls (Geological Section 2), the embankments comprise entirely Zone 2 material (in the upstream shoulder) overlying Dacite.

Along the upstream toe of the embankment, a layer of Silty SAND (crusher dust) was encounter immediately above foundation level. The original design drawings do not show such zoning and the reason for its inclusion within the embankment is not known; probably for some construction benefit, acting as a working platform. In terms of the performance of the embankment, such a localised zone of sandy soil is not significant. Geological Section 2 also shows the backfilling of the diversion channel with Zone 1 material, as detailed in the design drawings.

The interpreted sections indicate that the surface of the rock slopes from high on the abutments towards the creek, with rock levels higher on the right abutment than the upper left abutment. Furthermore, the surface of the rock appears to dip downstream, particularly so on the left abutment.

The interpreted position of the Telstra and gas main services are indicated on the geological sections. These details have been interpreted from the survey report on the pot holing investigations. The gas main is located below the twin Telstra conduits. The interpreted levels of the conduits as shown in both geological long section drawings is summarised in Table 5.03.

| Position                     | Chainage    | Conduit  | Anticipated Elevation to top of conduit | Anticipated depth |
|------------------------------|-------------|----------|-----------------------------------------|-------------------|
| Left Embankment – Section 1  | Ch 74.377m  | Gas main | EL 576.778m                             | 1.0m              |
| Left Embankment – Section 1  | Ch 74.463m  | Telstra  | EL 576.977m                             | 0.8m              |
| Right Embankment – Section 1 | Ch 181.684m | Gas Main | EL 576.140m                             | 1.1m              |
| Right Embankment – Section 1 | Ch 181.772m | Telstra  | EL 576.566m                             | 0.7m              |
| Left Embankment – Section 2  | Ch 73.123m  | Telstra  | EL 576.564m                             | 0.8m              |
| Left Embankment – Section 2  | Ch 73.216m  | Gas Main | EL 576.414m                             | 1.5m              |
| Right Embankment – Section 2 | Ch 182.437m | Gas Main | EL 576.061m                             | 1.2m              |
| Right Embankment – Section 2 | Ch 182.519m | Telstra  | EL 576.583m                             | 0.7m              |

Table 5.03 – Summary of Services at Geological Section Lines

#### 5.5 Interpretation of Geological Mapping

Interpretation of the principal rock joint defect orientations has been undertaken to assess the potential for adversely dipping rock joints in the weir foundation.

Flat or shallow dipping joint defects that are diiping in the downstream direction were not observed in the geological mapping. Interpretation of the stereonet pole plots indicate that a there is potential for a wedge of rock formed by intersecting joint surfaces that are shallow dipping in the upstream direction.

The principal intersecting rock joint sets that form this upstream dipping block of rock comprise:

- Joint Set 3 (J1) (83°/315°); and
- Joint Set 1 (J3) (35°/080°).

The line of intersection of these joint defects is orientated with a plunge and trend of:

 Intersection of J1 and J3 = 25° plunge which trends towards 044°, i.e. shallow dipping upstream direction.

The downstream direction of the weir is orientated with a magnetic bearing of nominally 220° and the pole to the line of the J1-J3 intersection has a trend of 224°.

It is therefore considered that the direction of the river and that of the J1-J3 intersection are essentially in the same direction and if sliding in the downstream direction occurred it would be along a surface inclined at nominally 25°.

It is interpreted that the shear strength parameters for assessing sliding stability of the foundation along a rock joint surface would comprise the basic friction angle of the rock surface plus angle of joint dip. The basic friction angle ( $\phi_b$ ) of the joint surface is considered to be equivalent to the residual friction angle of the rock joints. Typically the residual friction angle of joint defects for volcanic rock such as Dacite may be about 35°. Therefore the resisting load against sliding in the downstream direction along continuous intersecting rock joints may be assessed using the equation:

•  $S = N x \tan(\phi_b + i)$ , where S = sliding resistance, N = normal load,  $\phi_b = 35^{\circ}$  and  $i = 25^{\circ}$ .

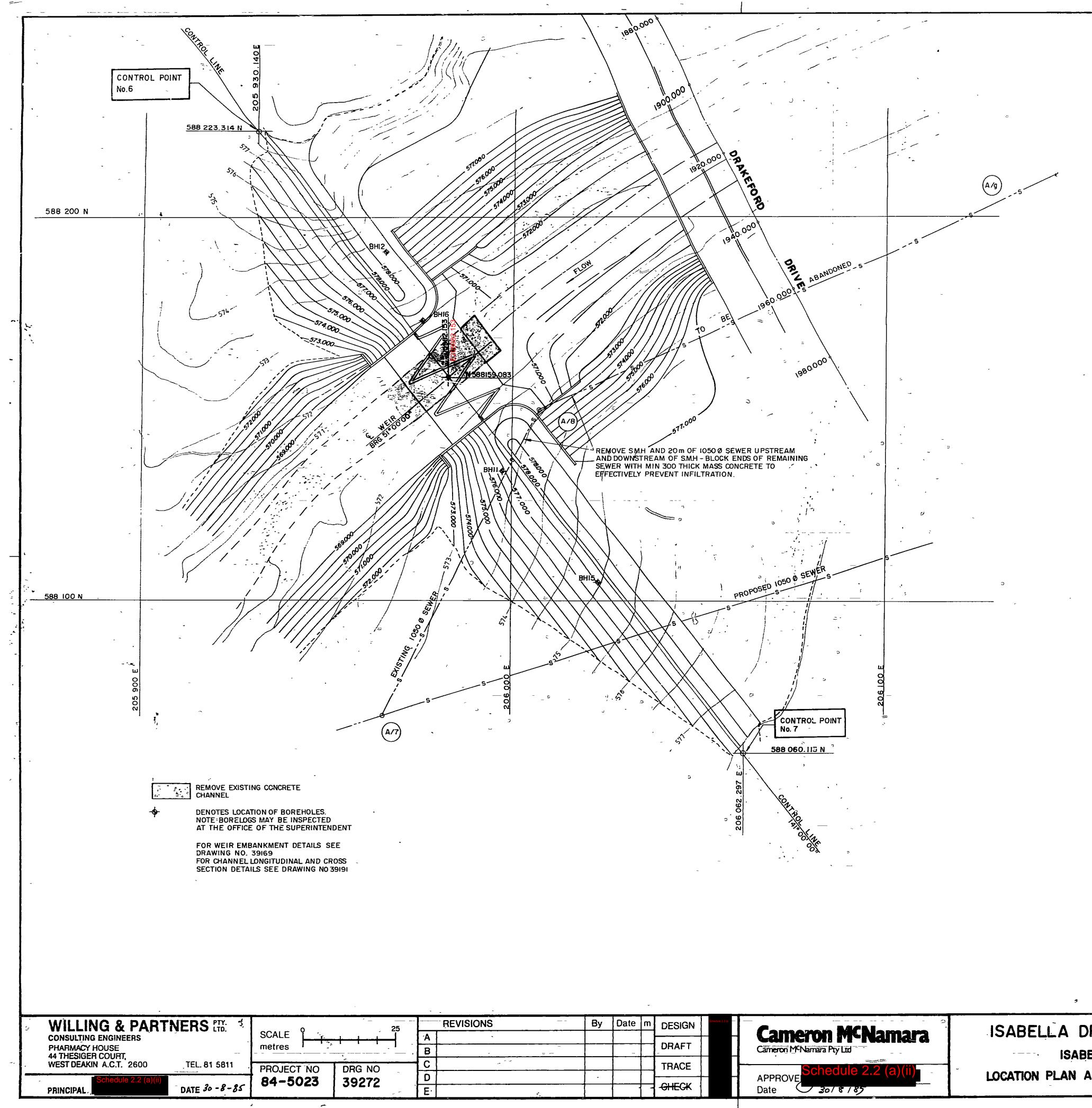
### **6.SUMMARY AND CONCLUSIONS**

Geotechnical investigations were undertaken at the Isabella Weir site prior to and during construction of the weir in the mid to late 1980s. More recently geotechnical drilling investigations were completed as part of the risk assessment works undertaken by Jacobs/SKM in 2014.

Since the Jacobs/SKM investigations, and as part of the detailed design services for the upgrade works for the weir, test pit investigations were undertaken in February 2015 to confirm details of embankment zoning and foundation conditions along the upstream toe of the embankment section of the weir.

The crest of the Zone 1 impervious clay core within the embankment was exposed at a number of locations as part of these test pit investigations. Representative soil samples of the embankment materials were recovered from the test pit excavations. Selected samples were subsequently submitted for laboratory testing. Potholing of the gas main and telecom (Telstra) service conduits that traverse through the site and embankment has also been undertaken.

The findings from the test pits indicate that the embankment zoning is typically in accordance with the available "Work as Executed" drawings. Bedrock comprising highly to less weathered Dacite was observed in the test pits excavated along the upstream toe of the embankment.


Zone 1 impervious clay core material was exposed at nominally 1.5m below the existing surface of the embankment crest.

Laboratory testing of the soil samples recovered from the test pit excavations has been undertaken. The results of these tests indicate that the Zone 1 and Zone 2 earth fill materials are nominally in accordance with the Coffey (1985) embankment design specifications. Triaxial testing of the Zone 1 core material indicates that the samples tested exhibit strength and deformation properties that would be in the normal range for embankment dam clay core. The classification properties of the Zone 1 material demonstrate that the material is of high plasticity and highly dispersive in distilled water.

Geological mapping of Dacite rock exposures downstream of the weir was undertaken with stereo net pole plots presenting the joint defect mapping results. These plots indicate that shallow dipping joints, which dip nominally in the upstream direction, were observed together with steeply dipping joints that dip across the creek and moderately to steeply dipping joints that dip downstream. The assessment of the jointing geometry has identified a potential rock block that may release when loaded in the downstream direction, albeit with a high friction angle of 60° against sliding.

Geotechnical plan and long-section drawings have been prepared. These drawings show the locations of the borehole and test pit investigation; the alignment and depth of gas main and telecom (Telstra) service conduits at the site. They also indicate the relative relationship between the embankment fill and foundation materials along the alignment of the weir. These drawings together with relevant extracts from previous geotechnical reports and results of the laboratory testing certificates are included as Appendices to this report.

APPENDIX 2.01: ISABELLA WEIR – "AS-CONSTRUCTED" DRAWINGS



|                   |                          |                   |        |   |      | _   | -        | -     |
|-------------------|--------------------------|-------------------|--------|---|------|-----|----------|-------|
| ISABELLA DRIV     |                          | Schedule 2.2 (a — | DESIGN | m | Date | Ву  | <b>S</b> | SIONS |
| ISABELLA DRIV     | Cameron MCNamara         |                   |        |   |      |     |          |       |
| ISABELL           | Cameron McNamara Pty Ltd |                   | DRAFT  |   | _    |     | -        | -     |
| , ·               | Schodulo 2 2 (a)(ii)     |                   | TRACE  |   |      |     |          | -     |
| LOCATION PLAN AND | APPROVE                  |                   |        |   |      | · · |          |       |
| -                 | Date 30/8/85             |                   | GHEGK  |   |      |     |          |       |

### GENERAL NOTES

CONCRETE AND ASSOCIATED WORKS

FOUNDATION MATERIAL SHALL BE APPROVED FOR A SAFE BEARING CAPACITY OF 500 kPg BEFORE PLACING CONCRETE ALL CONCRETE WORK SHALL COMPLY WITH SAA CONCRETE STRUCTURES

CODE AS 1480

CONCRETE SHALL HAVE A CHARACTERISTIC COMPRESSIVE STRENGTH F'C OF 25 MPG AT 28 DAYS

NOMINAL MAXIMUM AGGREGATE SIZE SHALL BE 20mm JULESS NOTED OTHERWISE

CONCRETE IN WALLS SHALL HAVE A SLUMP OF BOMM MAX ALL OTHER CONCRETE SHALL HAVE A SLUMP OF 60mm MAy

ADMIXTURES SHALL NOT BE USED WITHOUT THE APPROVAL OF THE SUPERINTENDENT CONSTRUCTION JOINTS SHALL BE MADE ONLY WHERE SHOWN ON THE DRAWINGS

OR WHERE APPROVED BY THE SUPERINTENDENT CONCRETE SHALL BE COMPACTED BY MECHANICAL VIBRATION

ALL CONCRETE SURFACES SHALL BE CURED AS SPECIFIED FOR A MINIMUM OF SEVEN DAYS

ACCEPTANCE CRITERIA SHALL BE SPECIFIED IN SAA CONCRETE STRUCTURES CODE AS 1480

MINIMUM CONCRETE COVER TO ANY REINFORCEMENT INCLUDING FITMENTS SHALL BE :

| SHALL  | BF | : |      |      |         |            |
|--------|----|---|------|------|---------|------------|
| FOOTIN | GS | - | 75mm | CAST | AGAINST | EXCAVATION |
|        |    | _ | 50mm | CAST | AGAINST | FORM       |

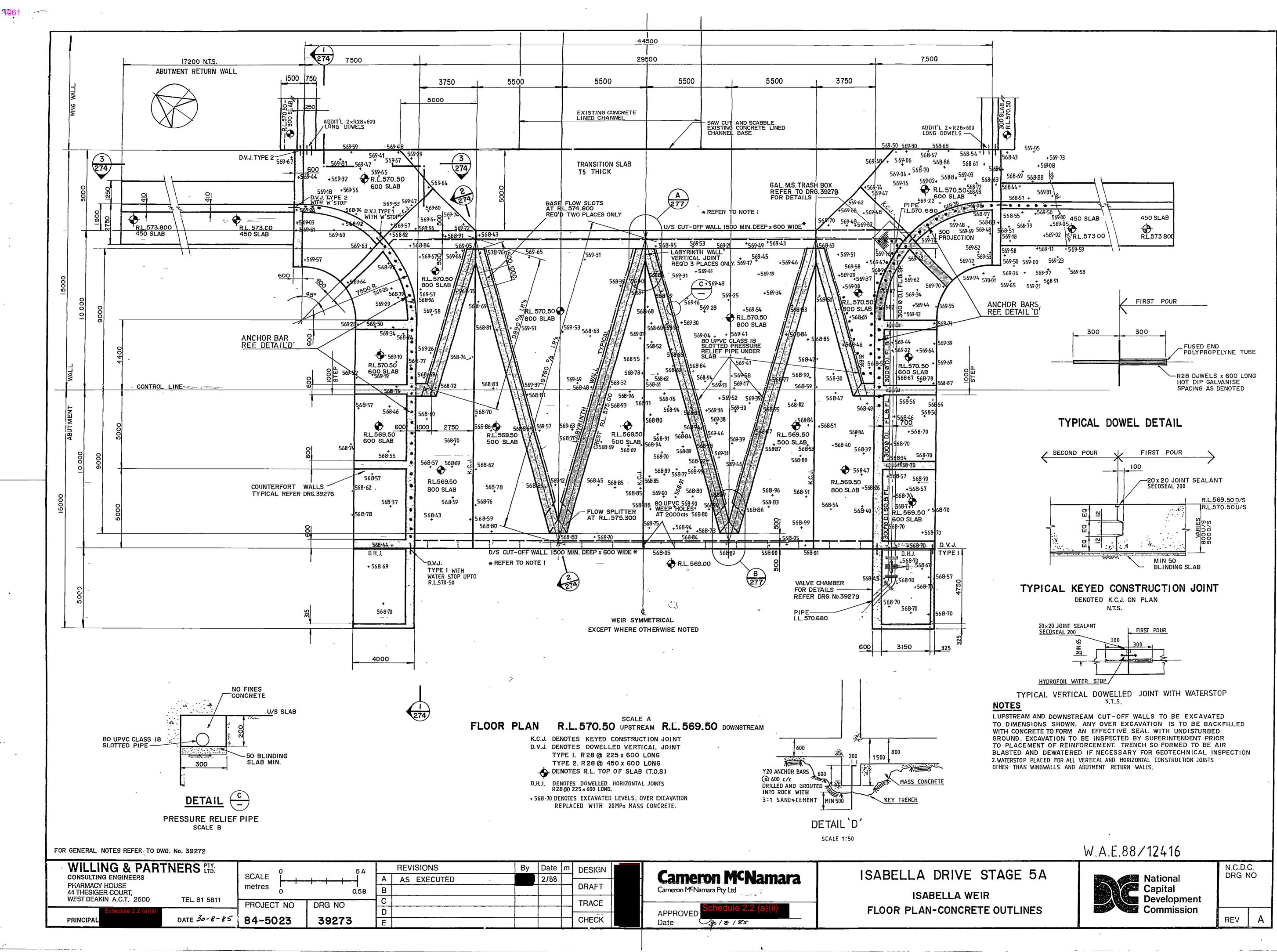
- 50mm TOP WALLS - 65mm GENERALLY; 50mm FOR REAR FACE OF RETAINING WALL SLABS - 65 TOP; 65 BOTTOM

KEY TO REINFORCEMENT NOTATION

- R = PLAIN BAR STRUCTURAL GRADE
- Y = DEFORMED BAR GRADE 410 TO AS 1302 F = HARD DRAWN WIRE FABRIC
- THE NUMBER BEFORE THE REINFORCEMENT TYPE INDICATES THE
- NUMBER OF BARS IN THE GROUP - THE NUMBER AFTER THE REINFORCEMENT TYPE INDICATES THE
- BAR SIZE IN MILLIMETRES - THE NUMBER FOLLOWING THE BAR SIZE INDICATES THE BAR SPACING IN MILLIMETRES

THE STRUCTURE HAS BEEN DESIGNED TO CARRY THE FOLLOWING SUPERIMPOSED LOADS: A COMBINED HYDROSTATIC PRESSURE LOADING DUE TO I:10 000 AEP FLOOD AND A UNIFORM AERATION PRESSURE LOADING OF - 30m HEAD OF WATER

ADJACENT POURS SHALL NOT BE PERMITTED AT INTERVALS OF LESS THAN SEVEN DAYS EXPOSED EDGES SHALL BE CHAMFERED 25mm AND RE-ENTRANT ANGLES FILLETED 25mm UNLESS OTHERWISE SHOWN


W.A.E.88/12415

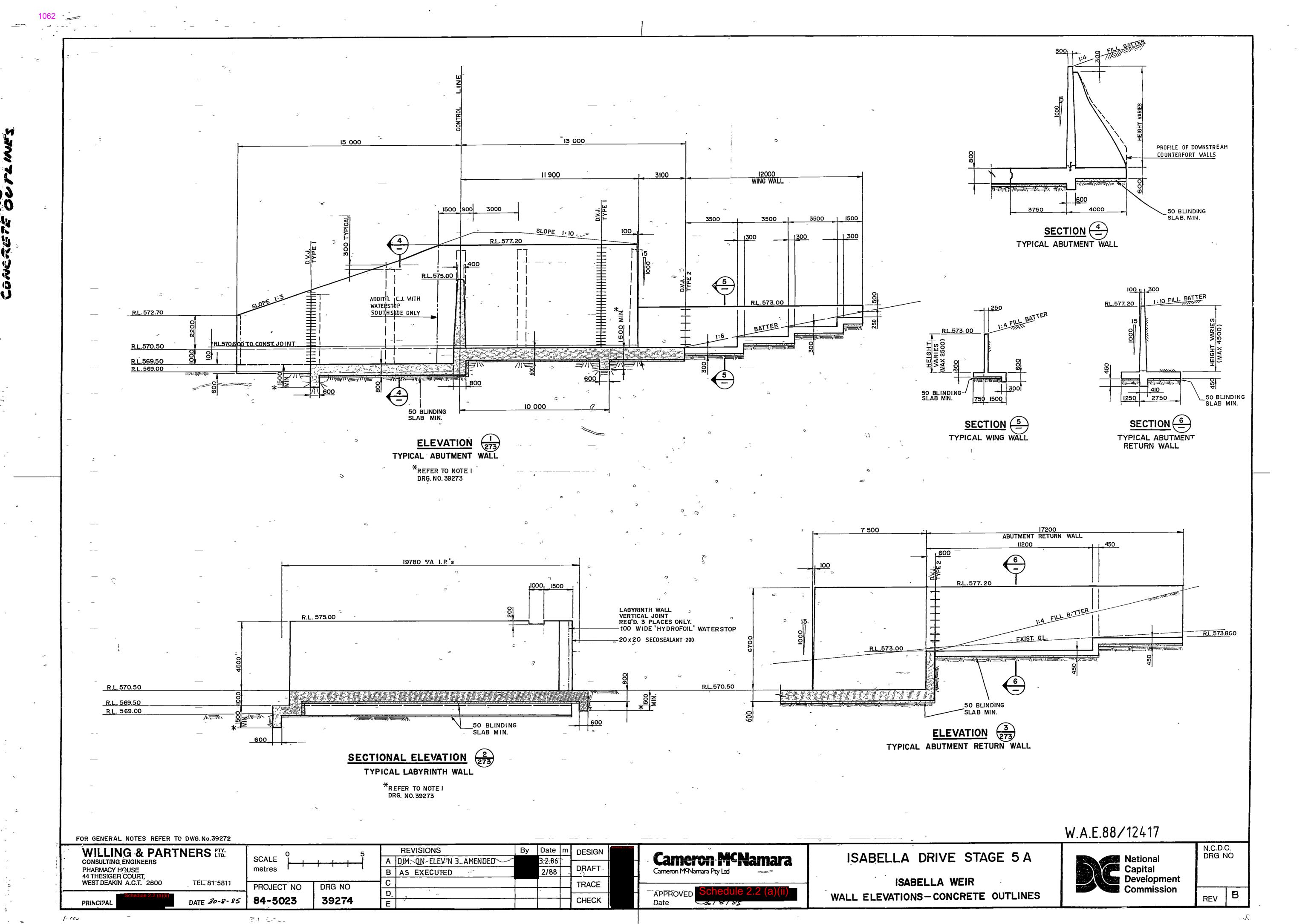
RIVE STAGE 5A LA WEIR D' GENERAL NOTES



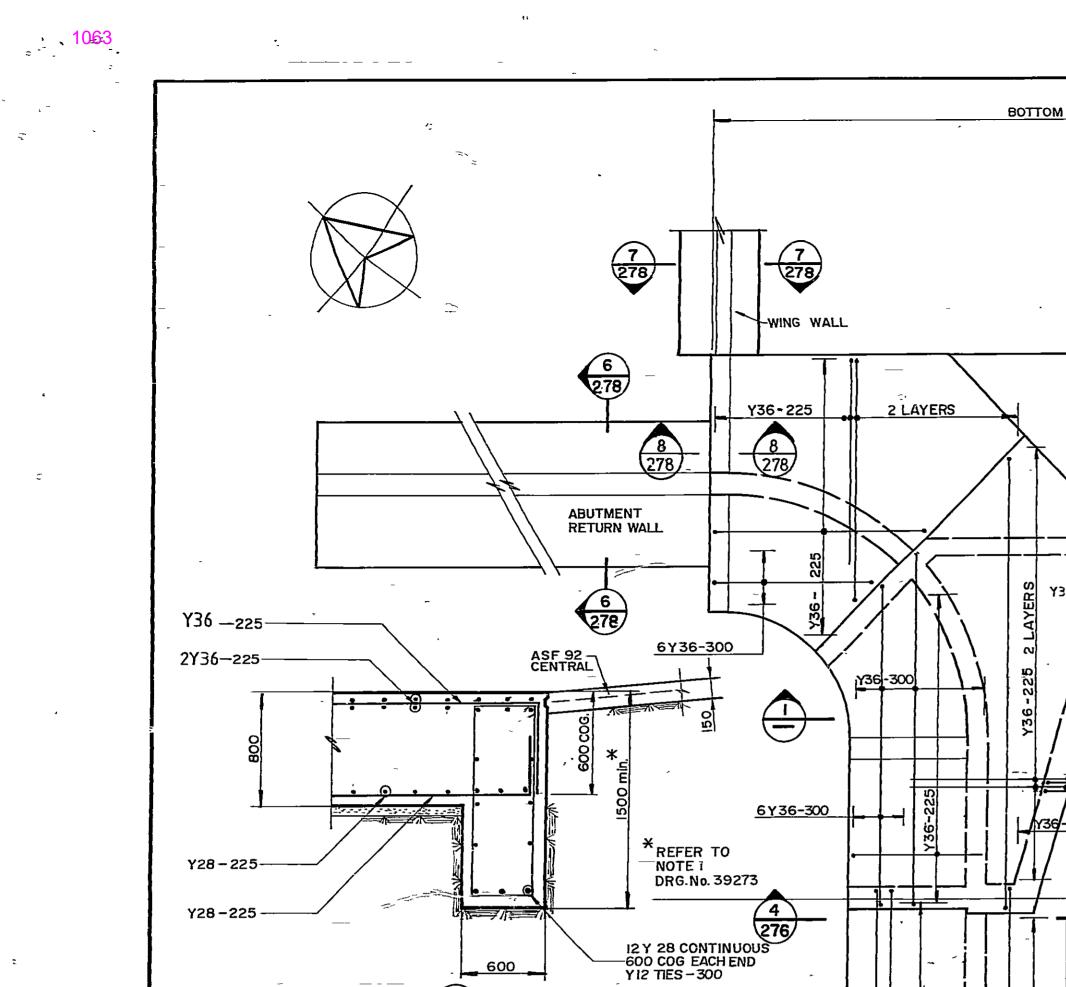
Э. N 2 7. DRG NO

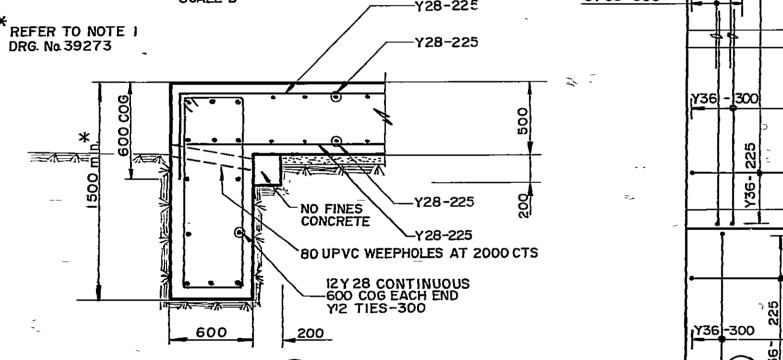
REV

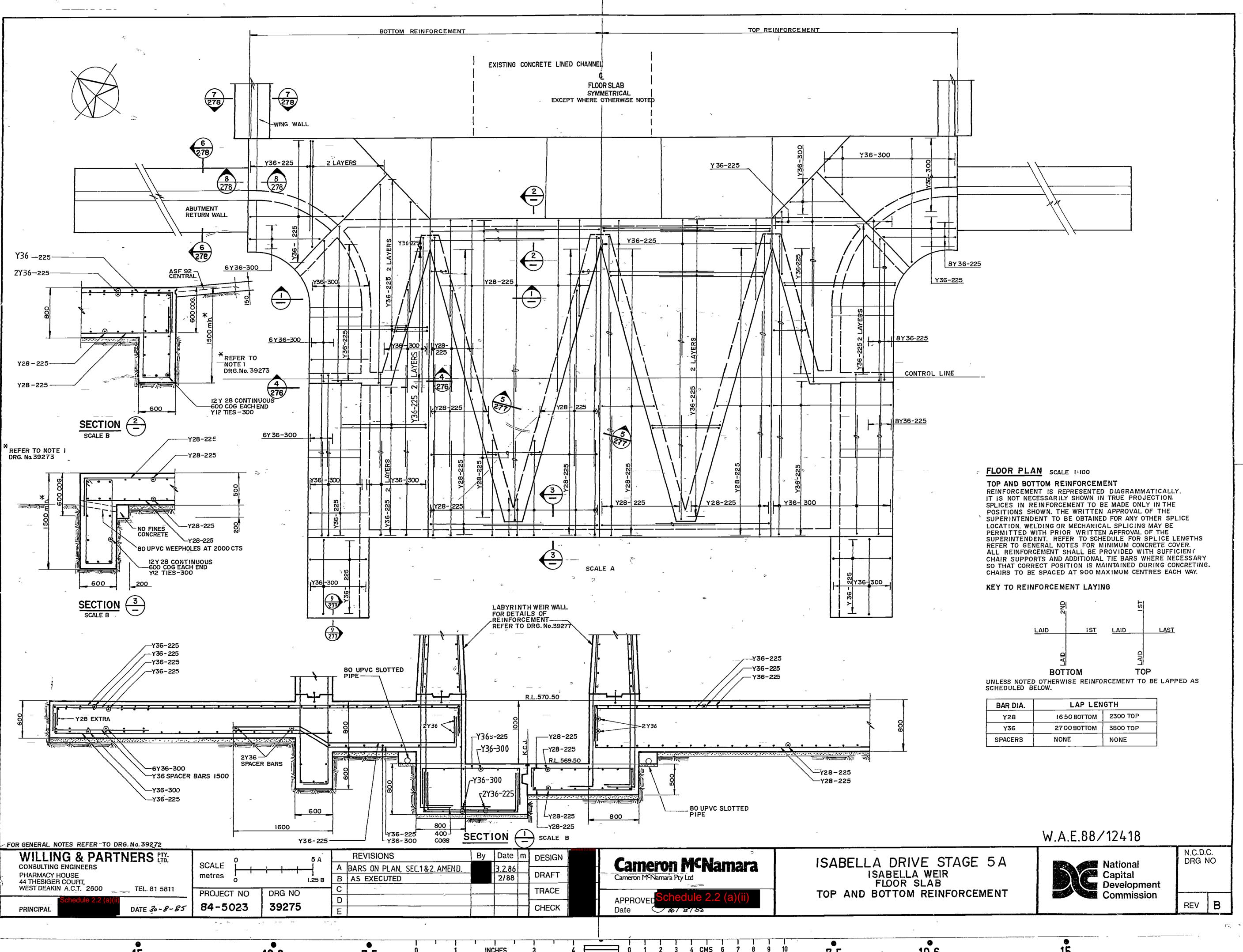



Lant our

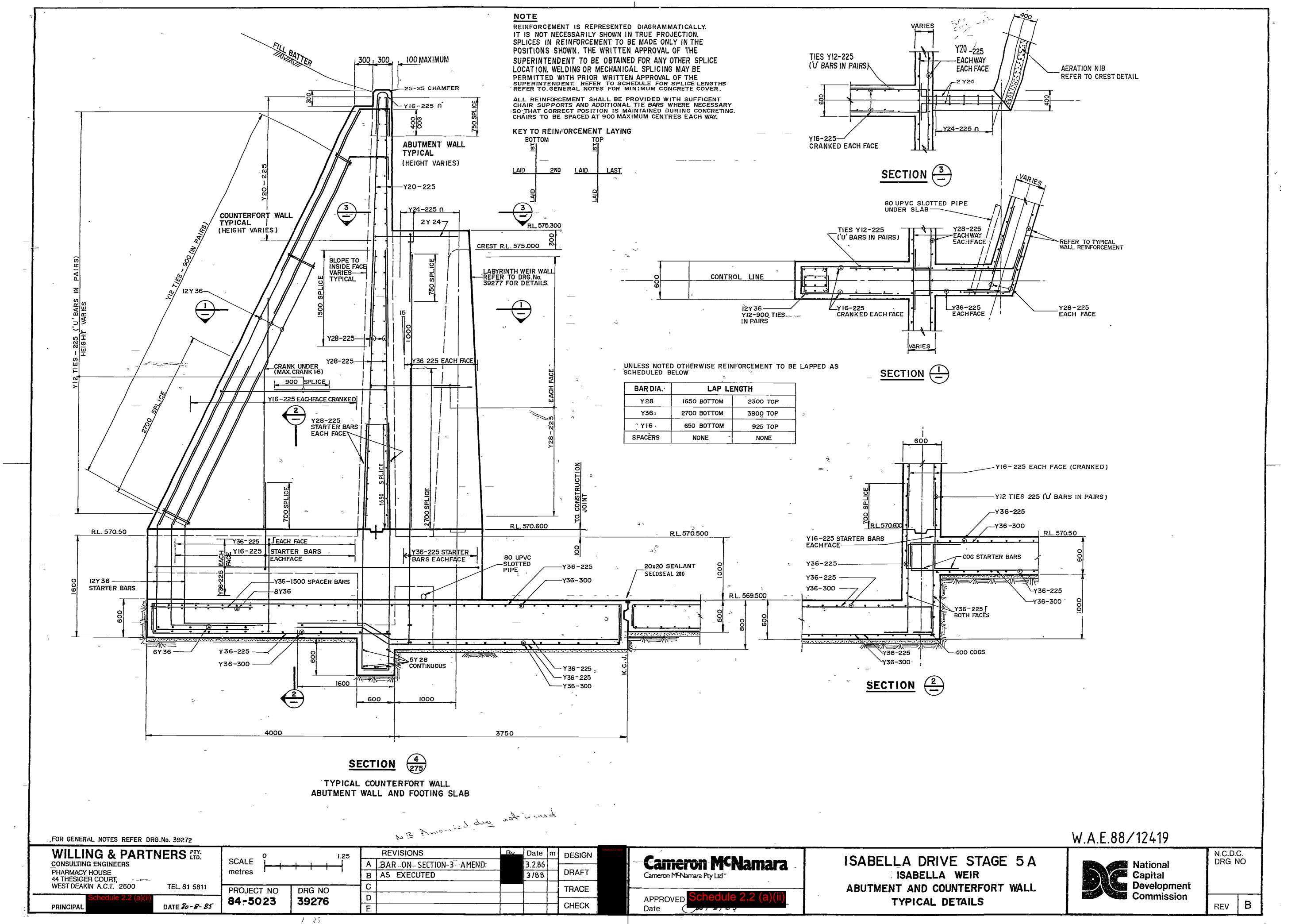
\_


6


- 0


•

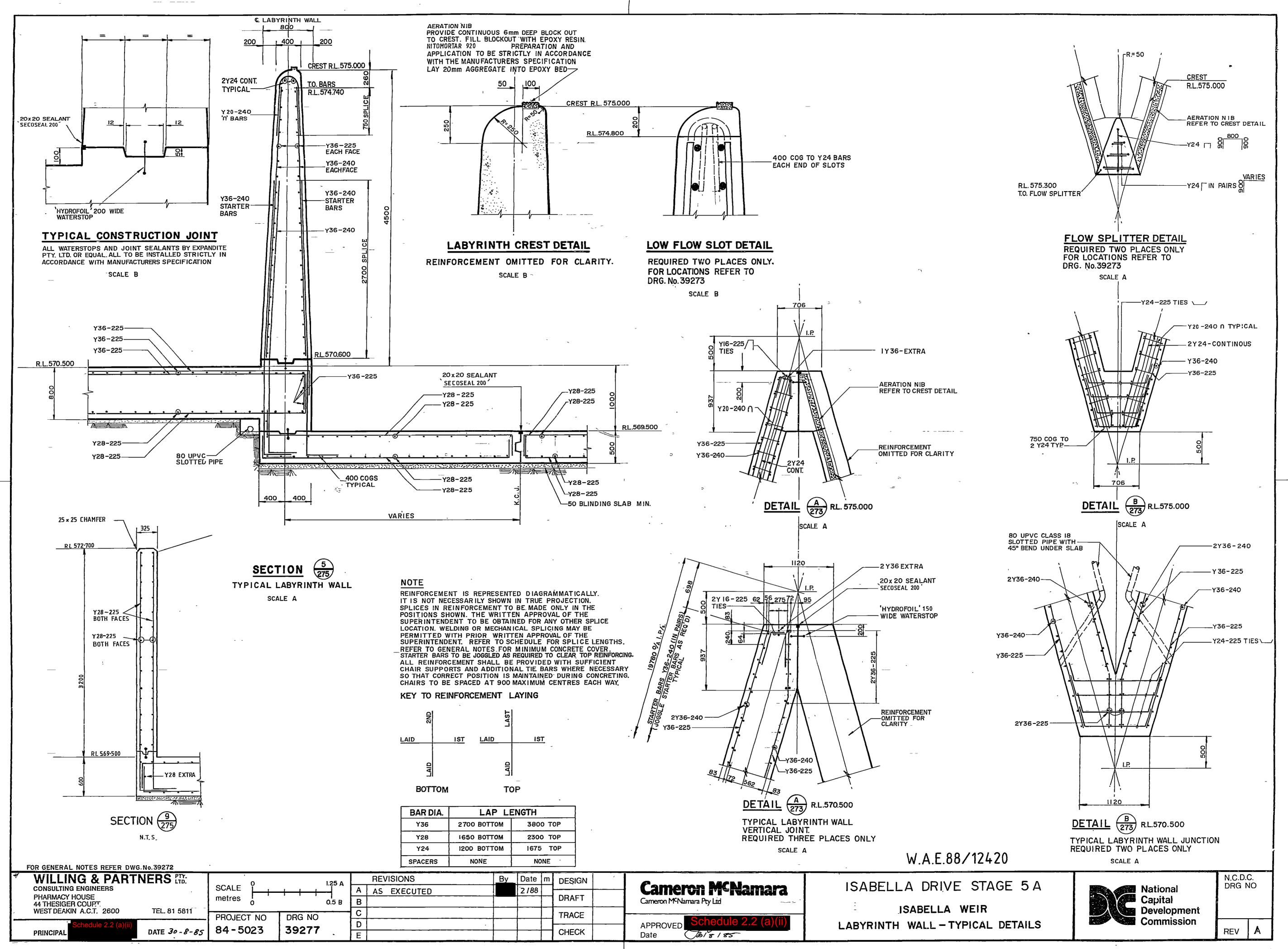


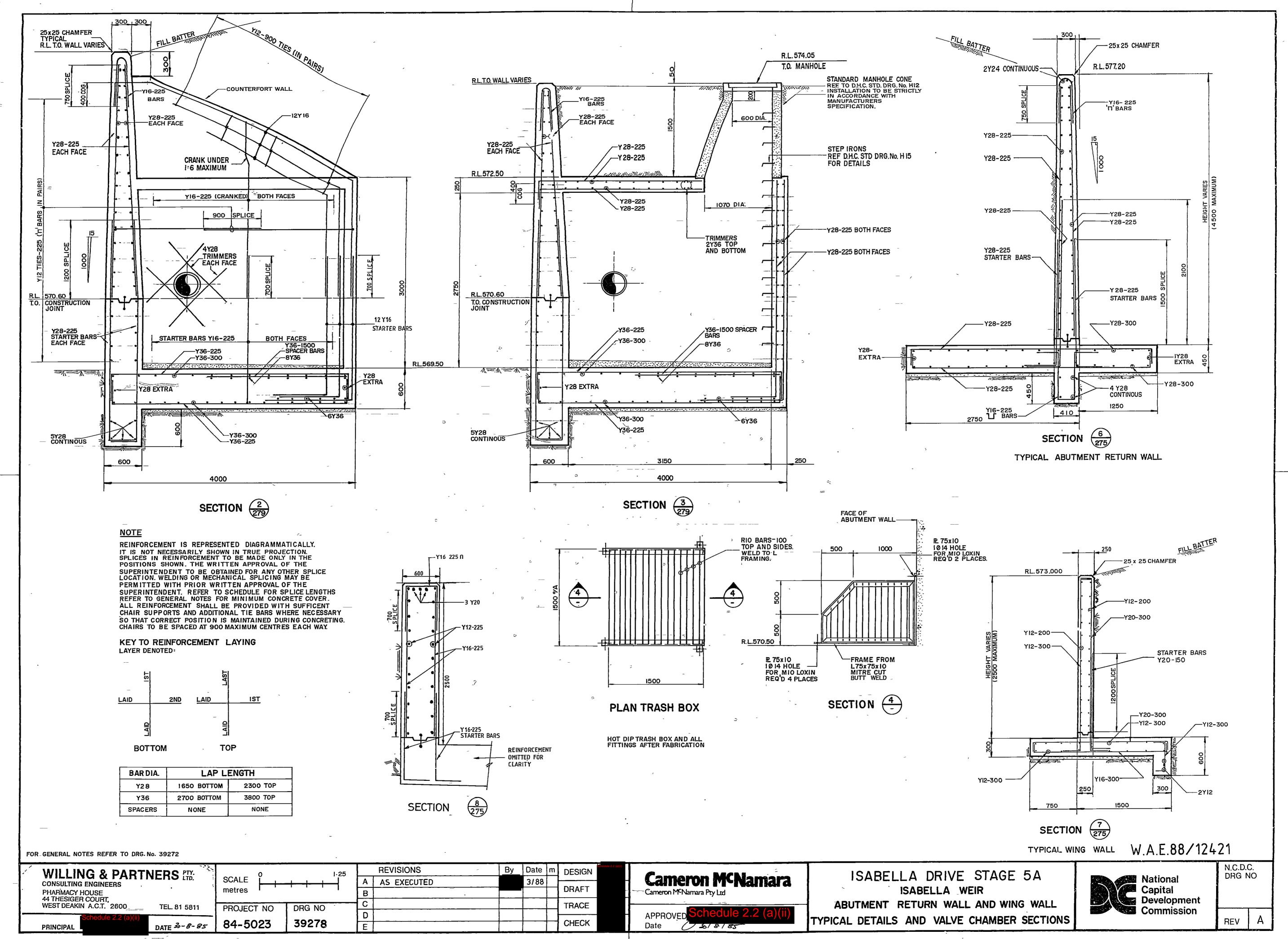

| В | - | Date           |             | DESIGN         |                                       | ISABELLA DRIVE STAGE 5                          |
|---|---|----------------|-------------|----------------|---------------------------------------|-------------------------------------------------|
|   |   | 3:2:86<br>2/88 | ,<br>,<br>, | DRAFT          | Cameron MCNamara Pty Ltd              |                                                 |
|   |   |                |             | TRACE<br>CHECK | APPROVED Schedule 2.2 (a)(ii)<br>Date | ISABELLA WEIR<br>WALL ELEVATIONS-CONCRETE OUTLI |

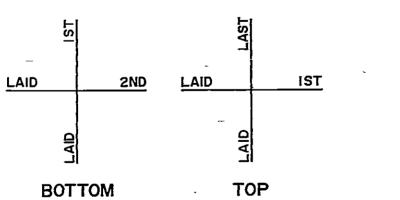


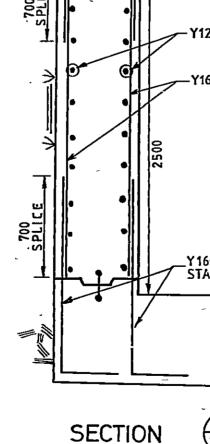








|                              | By | Date           | <b>∔</b>      | DESIGN | Schedule 2.2 (a)(ii) | - Cameron MCNamara                                 | ISABELLA DRIV    |
|------------------------------|----|----------------|---------------|--------|----------------------|----------------------------------------------------|------------------|
| N-SECTION-3-AMEND:<br>ECUTED |    | 3.2.86<br>3/88 | $\rightarrow$ | DRAFT  |                      | Cameron M <sup>C</sup> Namara Pty Ltd <sup>=</sup> | ISABELLA         |
|                              |    |                |               | TRACE  |                      | Schodulo 2 2 (a)(ii)                               | ABUTMENT AND COU |
|                              |    |                |               | CHECK  |                      | APPROVED Schedule 2.2 (a)(II)<br>Date              | TYPICAL D        |
|                              |    |                |               |        |                      |                                                    |                  |




•• -\_\_\_\_ \_\_\_\_





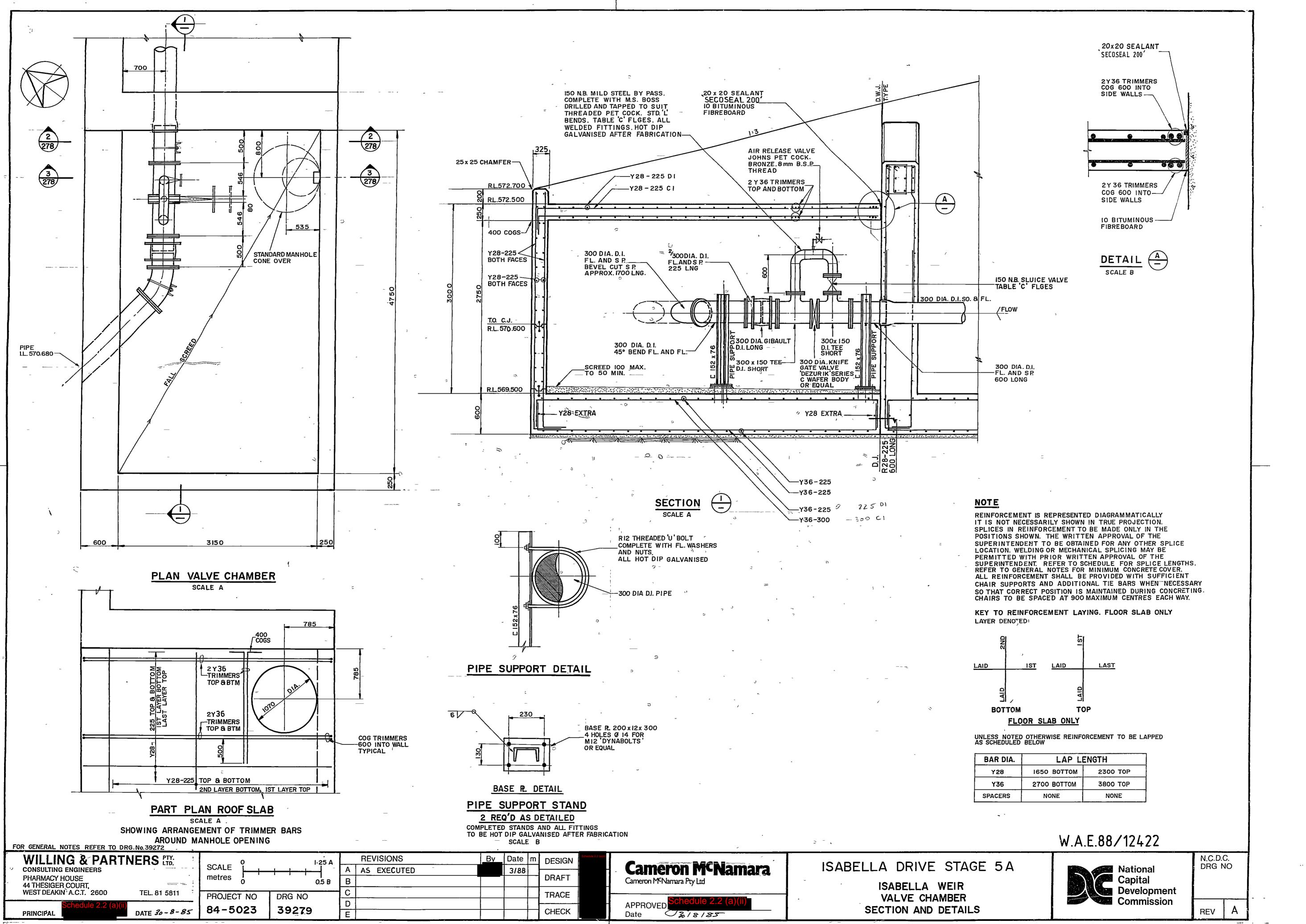




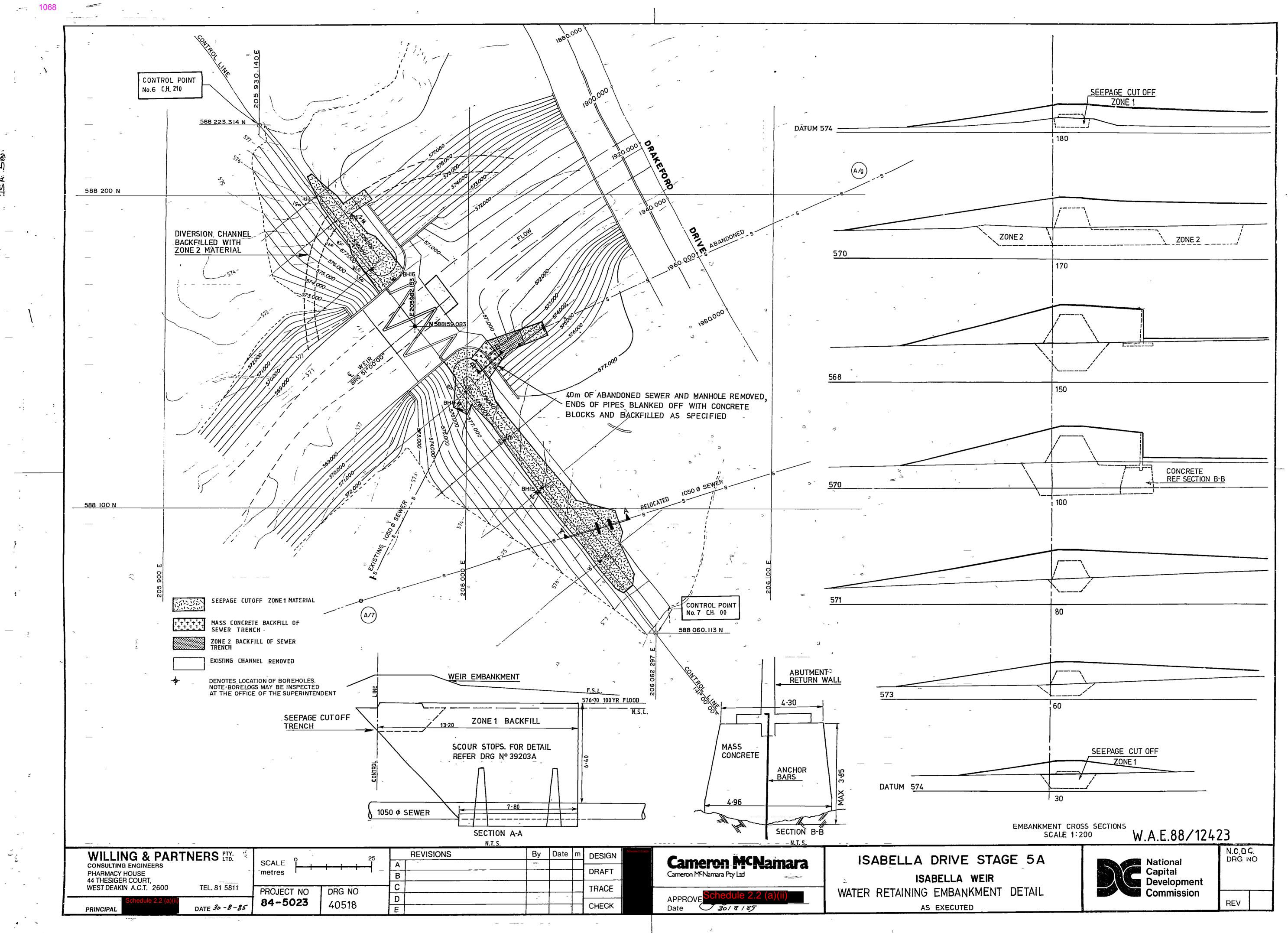
, <sup>1</sup>4

- i.

| - * * | WILLING & PARTI<br>CONSULTING ENGINEERS<br>PHARMACY HOUSE<br>44 THESIGER COURT,<br>WEST DEAKIN A.C.T. 2600 | TEL. 81 5811 | SCALE<br>metres       |       | A<br>B<br>C | REVISIONS<br>AS EXECUTED |  |
|-------|------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-------|-------------|--------------------------|--|
|       | Schedule 2.2 (a)(ii)<br>PRINCIPAL                                                                          | DATE 30-8-85 | PROJECT NO<br>84-5023 | 39278 | D<br>E      |                          |  |




.


. t,

\_\_\_\_\_

1



11



**)** 1 1 1



### APPENDIX 2.02: COFFEY 1985 – RELEVANT BH LOGS, UCS AND POINT LAD TEST RESULTS

8-0C

## engineering log borehole



borehole no.: B.H.11 sheet 1 of 2

|        | oject<br>preho |                          | loca                                        | IS                                                                                                                           |                       | DR          | IVE,                         | VESTIGATION -<br>STAGE 5, TUGGERANONG, A.C.T.<br>166/2.                                                                                                 | hole comp                                                                                 | by: Schedule 2.2 (a)(ii)                                                                                                                                                                                                                                                                                                                                                 |
|--------|----------------|--------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ho     | le di          | am                       |                                             |                                                                                                                              |                       | ck:         | Eds                          | on 3000 slope: 90 deg.<br>bearing: - deg.                                                                                                               | R.L. surfac<br>datum:                                                                     | .e: m<br>                                                                                                                                                                                                                                                                                                                                                                |
| method | N penetration  | support                  | water                                       | notes<br>samples,<br>tests,etc.                                                                                              | –i depth<br>∝metres   | graphic log | classification<br>symbol     | material<br>soil type: plasticity or particle characteristics<br>colour, secondary and minor components                                                 | moisture<br>condition<br>consistency,<br>density index<br>100<br>hand<br>3000<br>penetro- | structure and<br>additional observations                                                                                                                                                                                                                                                                                                                                 |
| ADT    |                |                          | NONE ENCOUNTERED                            |                                                                                                                              | 0,40                  |             | CL                           | Gravelly-sandy CLAY;<br>yellow-brown,medium plast,<br>sand fine to coarse,gravel<br>to 50 mm.<br>Borehole B.H.11 cored<br>from 0.40 m -<br>See Sheet 2. | D St<br>M                                                                                 | FILL -                                                                                                                                                                                                                                                                                                                                                                   |
|        |                | AS<br>AC<br>R<br>W<br>CT | ) au<br>rc<br>w<br>cc<br>it show<br>bl<br>T | uger screwing*<br>uger driling*<br>liler/tricone<br>ashbore<br>abbe tool<br>no by suffix<br>ank bit<br>20 bit<br>C bit<br>DT | support<br>penetrativ |             | 2 3<br>78 water leve<br>flow | D50 undisturbed sample 50 mm diameter ba     diameter ba     disturbed sample children                                                                  | 1051                                                                                      | consistency/density Index           VS         very soft           S         soft           F         film           St         titlif           VS         very still           H         hard           FD         triable           VL         very still           H         mad           D         dense           D         dense           VD         very dense |

Incorporated In Qld.

<u>160-</u>

## engineering log – cored borehole



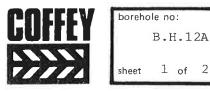
borehole no: B.H.11 sheet 2 of 2

|                     |                      | ject :<br>ehole | location        | IS<br>TU                      | SABELLA<br>JGGERAN   | DR<br>IONG             | L INVESTIGATION -<br>IVE, STAGE 5,<br>, A.C.T.<br>C.3166/2.                                       |            | hole co<br>supervi  | ommenced<br>ompleted:<br>sed by:<br>cked by:                                                              | 13.12.84<br>13.12.84<br>Schedulazz (a)()                                                                    |
|---------------------|----------------------|-----------------|-----------------|-------------------------------|----------------------|------------------------|---------------------------------------------------------------------------------------------------|------------|---------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                     |                      |                 |                 | •                             |                      |                        | son 3000 <sub>slope</sub> : 90 deg.                                                               |            | R.L. su             | rface :                                                                                                   | m                                                                                                           |
|                     |                      | -               |                 |                               | L.5 m I              | р.т.                   | fluid waterbearing: - deg.                                                                        |            | datum:              |                                                                                                           |                                                                                                             |
| -                   | drilling information |                 |                 |                               |                      | 6                      | rock substance                                                                                    | 0          | strength            | No. of Concession, name                                                                                   | mass defects                                                                                                |
| method              | case-lift            | water           | test<br>lugeons |                               | _i depth<br>£ metres | graphic lo<br>core los | substance description<br>rock type: grain characteristics,<br>colour, structure, minor components | weathering | strength<br>Is (50) | spacing<br>mm<br>o<br>coord<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo | defect description<br>thickness, type, inclination,<br>planarity, roughness, coating.<br>particular general |
| Г                   | Π                    | Τ               |                 |                               | _                    |                        | B.H.ll auger drilled to 0.40 m.                                                                   |            |                     | Ţ                                                                                                         | -                                                                                                           |
|                     | ╢                    |                 |                 | E                             | 0.40                 |                        | DACITE; fine to medium                                                                            | HW         | timi                |                                                                                                           | joints subvertical,                                                                                         |
|                     |                      |                 |                 | -2.                           | 0.75 _<br>1 _        | _                      | grained, mauve.                                                                                   |            |                     |                                                                                                           | planar,rough,clay<br>veneer                                                                                 |
|                     |                      |                 |                 | 0<br>0                        | -<br>1.53 -          |                        | NO CORE 0.78 m                                                                                    |            |                     |                                                                                                           | -                                                                                                           |
|                     | Π                    |                 |                 | ter,                          | 1                    |                        | DACITE; fine to medium                                                                            | MW<br>SW   |                     | ť)                                                                                                        |                                                                                                             |
|                     |                      |                 |                 | iezometer,                    | 2 _                  |                        | grained, mauve,fine calcite seams.                                                                | ISW        |                     | ťZ I                                                                                                      | joints 20° & 60°,                                                                                           |
| Contraction Con     |                      |                 |                 | piez                          |                      |                        |                                                                                                   |            |                     | £⁄۱۱                                                                                                      | planar,rough & smooth,<br>—clay veneer                                                                      |
| State of the second |                      |                 |                 |                               | 3                    |                        |                                                                                                   |            |                     | ťΛΙ                                                                                                       | -                                                                                                           |
| NMEC                | Π                    |                 |                 |                               |                      |                        |                                                                                                   |            |                     | F7                                                                                                        |                                                                                                             |
| IN                  |                      |                 |                 |                               |                      |                        |                                                                                                   |            |                     | ₹⊿                                                                                                        | =60 <sup>0</sup> + 20 <sup>0</sup> joints                                                                   |
|                     |                      |                 |                 |                               | 4 _                  |                        |                                                                                                   |            |                     | <b>捉</b>                                                                                                  | 00 + 20 Joints                                                                                              |
|                     | H                    |                 |                 |                               |                      |                        |                                                                                                   | SW         |                     | ţ۸                                                                                                        |                                                                                                             |
|                     |                      |                 |                 |                               | -                    |                        |                                                                                                   |            |                     | ĹΛ                                                                                                        |                                                                                                             |
|                     |                      |                 |                 |                               | 5 _                  |                        |                                                                                                   |            |                     |                                                                                                           |                                                                                                             |
|                     |                      |                 |                 |                               | -                    |                        |                                                                                                   |            |                     | Ŧ/                                                                                                        | -                                                                                                           |
|                     | Η                    |                 |                 |                               |                      |                        |                                                                                                   |            |                     | ť/                                                                                                        | -                                                                                                           |
|                     |                      |                 |                 |                               | 6 _                  | G                      |                                                                                                   |            |                     |                                                                                                           | -                                                                                                           |
|                     |                      |                 |                 |                               | 6.55 -<br>7 -        |                        | Borehole B.H.ll<br>terminated at required<br>depth.                                               |            |                     |                                                                                                           |                                                                                                             |
|                     |                      |                 |                 |                               |                      |                        |                                                                                                   |            |                     | İ.                                                                                                        | 1                                                                                                           |
| F                   | Ц                    |                 | <u>еу</u>       | <u></u>                       |                      | ise lift               | pressure lest                                                                                     | l          | weathering          |                                                                                                           | strength<br>(indirect censile strength)                                                                     |
|                     |                      | A               | NS ND           | auger screwi<br>auger drillin | ng                   |                        | used (350) maximum effective press<br>effective press<br>in test (kPa)<br>graphic log/core loss   | Jre        | SW                  | ireso<br>Vightly<br>Weathered                                                                             | EL – extremely low<br>VL very low                                                                           |
|                     |                      | R<br>W          | t<br>V          | roller/tricon<br>washbore     |                      | 10 Or<br>water         |                                                                                                   | < 10       |                     | noderately<br>weathered                                                                                   | L - Iaw<br>M - medium<br>H high                                                                             |
|                     |                      | N               | IMLC            | NMLC core<br>Jriling          |                      |                        | drilling water loss<br>ete drilling water loss<br>ete drilling water loss                         |            | EW -                | weathered<br>weathered                                                                                    | rr nign<br>VH - very high<br>EH — extremely high                                                            |

8-0

## engineering log borehole

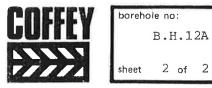



borehole no.: B.H.12 sheet 1 of 1

| I .     | project                                                                                                                      |                          | оса                                      | IS                                                                                                    | SABELLA                                        | A Dł            | RIVE,                            | IVESTIGATION -       hole commenced: 14.12.84         NVESTIGATION -       hole completed: 14.12.84         STAGE 5, TUGGERANONG, A.C.T.       supervised by: checked by:         3166/2.       checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|         | drill model and mounting: Truck: Edson 3000 slope: 90 deg. R.L. surface: m<br>mole diameter: 110 mm bearing: - deg. datum: - |                          |                                          |                                                                                                       |                                                |                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| method  | L<br>Npenetration                                                                                                            | support                  | water                                    | <b>notes</b><br>samples,<br>tests,etc.                                                                | بَ depth<br>د metres                           | graphic log     | classification<br>symbol         | material<br>soil type: plasticity or particle characteristics<br>colour, secondary and minor components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| ADT AST |                                                                                                                              | Piezometer 0.8 m - 3.8 m | slow seepage                             |                                                                                                       | 0.40<br>1<br>1.80<br>2.50<br>2.85<br>3.80<br>4 |                 | SC<br>CL<br>CH<br>CL<br>SC<br>CL | Clayey SAND; brown, medium<br>plast., sand fine to coarse,<br>gravel to 50 mm.<br>Gravelly-sandy CLAY; brown,<br>black & yellow-brown,<br>medium to high plast., sand<br>fine to coarse, gravel to<br>50 mm.<br>Sandy CLAY; black, medium<br>plast., sand fine to coarse,<br>trace of gravel to 15 mm.<br>Clayey-gravelly SAND-<br>Sandy-gravelly CLAY;<br>yellow-brown & grey, low<br>to medium plast., sand fine<br>to coarse, gravel to 30 mm.<br>DACITE; fine to medium<br>grained, yellow-brown &<br>orange-brown, highly:<br>weathered, medium strength<br>Borehole B.H.12 terminated<br>at required depth.                                                     |  |  |  |  |
|         |                                                                                                                              | AS<br>AC<br>R<br>W<br>CT | ) a<br>ri<br>v<br>c<br>it show<br>b<br>r | uger screwing*<br>uger driling*<br>ashbore<br>ashbore<br>able tool<br>ank bit<br>("bit<br>C bit<br>OT | support<br>panatrat<br>waler                   | 10 Jan<br>water | 1 mud<br>2 3                     | notes         samples and tests         classification symbols         consistency/density index           no resistance<br>ranging to<br>refusal         D         disturbed sample         based on unitied         VS         very soft           N         standard penetration test<br>figure = result         moisture         D         disturbed sample         Si         sith           N*         SPT + sample         M         moistor         VL         very loose           Nc         cone penetrometer         W         vert         MD         medium dense           D         description         VS         vert         D         description |  |  |  |  |

Incorporated In Qld.

. . . – 091


## engineering log – cored borehole



| office and job ne | o: CANBERRA | : C. | .31 | 66 |
|-------------------|-------------|------|-----|----|
|-------------------|-------------|------|-----|----|

| proje<br>boret      | nct:<br>nole location:         | ISABELLA<br>TUGGERAN                               | NICAL INVESTIGA<br>A DRIVE, STAGE<br>NONG, A.C.T.<br>WING C.3166/2.                                                                                                        |                                                                                                                                                              |                             | hole cor<br>supervis                 | mpleted:                                                                                                         | 14.12.84<br>17.12.84<br>Science 222(0)                                                                                                                                                                             |
|---------------------|--------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                |                                                    | : Edson 3000 slop<br>F.T. fluidwaterbeau                                                                                                                                   |                                                                                                                                                              |                             | R.L. sur<br>datum:                   | face: -                                                                                                          | m                                                                                                                                                                                                                  |
| drilli              | ing informatior                |                                                    | rock substance                                                                                                                                                             |                                                                                                                                                              |                             |                                      | rock r                                                                                                           | mass defects                                                                                                                                                                                                       |
| method<br>case-lift | pressure<br>test<br>lugeons    | _i depth<br>& metres                               | rock type: gra                                                                                                                                                             | description<br>in characteristics,<br>minor components                                                                                                       | weathering                  | strength<br>Is (50)<br>בבער כש       | defect<br>spacing<br>mm<br>o<br>coo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>mo<br>m | defect description<br>thickness, type, inclination,<br>planarity, roughness, coating.<br>particular general                                                                                                        |
| LC ADT              |                                | biezometer 3.0 m - 4.8 m<br>- 4.8 m<br>            | Borehole B<br>auger dril<br>2.90 m.                                                                                                                                        | led to<br>22 m<br>e & medium<br>uve                                                                                                                          | HW<br>HW-<br>MW<br>MW<br>SW |                                      |                                                                                                                  | joints 45°-60°,planar;<br>smooth,stepped &<br>slickensided,stained<br>& clay veneered<br>joints 70° to sub-<br>vertical,smooth,<br>planar,clay veneered<br>joints/partings 20°-<br>30°,planar rough,clay<br>veneer |
|                     | AD Duger<br>R roller<br>W wash | screwing<br>drilling<br>/tricone<br>barø<br>C core | ase fitt<br>casing used<br>barrel withdrawn<br>witz<br>10 Oct, 73 water lavel<br>date shown<br>witz, inflow<br>partial drilling water loss<br>complete drilling water loss | (350) maximum<br>elfective pressur<br>in test (KPa)<br>graphic log/core loss<br>core recovered<br>(harching indi-<br>cates material)<br>no core<br>recovered |                             | SW = g<br>MW = w<br>HW = k<br>EW = e | an<br>ghly<br>sethered<br>ighly<br>sethered<br>istremely<br>sethered                                             | =calcite seam 2 mm<br>thick at 60°<br>findirect tensite strength)<br>EL - extremely low<br>VL - very low<br>L - low<br>M - medium<br>H - high<br>VH - very high<br>EH - extremely high                             |

## engineering log – cored borehole



|                                               |                      |                                                                                                                                                                    |                                                                                                                                                                                |                  | office and job                                                                                                                                   | no: CANBERRA: C.3166                                                                                                                                          |
|-----------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| project:<br>borehole location:                | ISABELLA<br>TUGGERAI | NICAL INVESTIGAT<br>A DRIVE, STAGE 5<br>NONG, A.C.T.<br>WING C.3166/2.                                                                                             |                                                                                                                                                                                |                  | hole commenc<br>hole completed<br>supervised by :<br>log checked by                                                                              | Schedule 2.2 (a)(ii)                                                                                                                                          |
| drill model and mo                            | ounting:Truck        | : Edson 3000 slope                                                                                                                                                 | : 90 deg.                                                                                                                                                                      |                  | R.L. surface:                                                                                                                                    | m                                                                                                                                                             |
| barrel type and ler                           | ngth: 1.5 m 5        | r.T. fluidwaterbearin                                                                                                                                              | ng: – deg.                                                                                                                                                                     |                  | datum:                                                                                                                                           |                                                                                                                                                               |
| drilling informat                             |                      | rock substance                                                                                                                                                     |                                                                                                                                                                                |                  |                                                                                                                                                  | mass defects                                                                                                                                                  |
| bressure<br>test<br>mater<br>33<br>100<br>100 | _i depth<br>㎡ metres | substance d<br>rock type: grain<br>colour, structure, m                                                                                                            | escription<br>characteristics,<br>inor components                                                                                                                              | weathering       | strength<br>Is (50)<br>Spacin<br>mm                                                                                                              | defect description<br>thickness, type, inclination,<br>planarity, roughness, coating.<br>particular general                                                   |
|                                               | 9                    | NO CORE 0.1<br>Borehole B.<br>terminated<br>depth.                                                                                                                 | н.12                                                                                                                                                                           |                  |                                                                                                                                                  |                                                                                                                                                               |
| AD<br>R<br>W<br>NMLC                          |                      | ase lift<br>casing used<br>barrel withdrawn<br>to Oct. 73 water level<br>date shown<br>water inflow<br>partial drilling water loss<br>complete drilling water loss | pressure test<br>(350) maximum<br>effective pressure<br>in test (kPa)<br>graphic log/core loss<br>core recovered<br>(hatching indi-<br>cates material)<br>no core<br>recovered | F<br>S<br>N<br>H | weathering<br>Fr - "esh<br>SW - slightly<br>weathered<br>WW - moderately<br>weathered<br>+W - highly<br>weathered<br>EW - extremely<br>weathered | strength<br>(indirect tensile strength)<br>EL – axtremely low<br>VL – very low<br>I. – low<br>M – medium<br>H – high<br>VH – very high<br>EH – extremely high |

Coffey & Partners Pty. Ltd.

## engineering log borehole



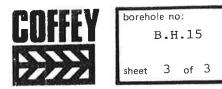
borehole no.: B.H.15 sheet 1 of 3

| projec<br>boreho             | t.<br>Die loca                               | IS                                                                                                                                       |                         | DRIVE,                                                                            | VESTIGATION -<br>STAGE 5, TUGGERANONG, A.C.T<br>166/2.                                                                                                            | -                         | hole commer<br>hole complet<br>supervised by<br>checked by:             | Schedule 2.2 (a)(ii)                                                                                                                                                                 |
|------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| drill m<br>hole d            |                                              | nd mounti<br>r: 11(                                                                                                                      | R.L. surface:<br>datum: | m                                                                                 |                                                                                                                                                                   |                           |                                                                         |                                                                                                                                                                                      |
| method<br>L<br>N penetration | support<br>water                             | <b>notes</b><br>samples,<br>tests,etc.                                                                                                   | ⊥i depth<br>Œmetres     | graphic log<br>classification<br>symbol                                           | material<br>soil type: plasticity or particle characteristics<br>colour, secondary and minor components                                                           | moisture<br>condition     | consistency,<br>density index<br>100 hand<br>2005 penetro-<br>400 meter | structure and<br>additional observations                                                                                                                                             |
| AST                          | TIN                                          | D                                                                                                                                        | 0.70<br>1<br>1.80<br>2  | ML<br>CH<br>SC                                                                    | Sandy SILT; brown, sand is<br>fine.<br>Sandy CLAY; yellow-brown,<br>high plast., sand fine to<br>coarse, some gravel to<br>5 mm.<br>Clayey SAND; brown, low       | M                         | MD<br>(Fb)<br>St                                                        | FILL<br>ALLUVIAL SOIL                                                                                                                                                                |
| Tap                          |                                              | D                                                                                                                                        | 2.20                    |                                                                                   | plast., sand fine to coarse,<br>DACITE; fine & medium<br>grained,mauve,highly<br>weathered,low strength.<br>Borehole B.H.15 cored<br>from 2.6 m -<br>See Sheet 2. | M<br>D<br>M               | MD                                                                      | EW ROCK                                                                                                                                                                              |
|                              | AD<br>R<br>W<br>CT<br>bit sho<br>B<br>V<br>T | auger screwing*<br>auger drilling*<br>roller/tricone<br>washbore<br>zable tool<br>win by suffix<br>blank bit<br>V'' bit<br>TC bit<br>ADT | - w                     | C casing<br>M mud<br>1 2 3<br>G Jan 78 water lev<br>vater inflow<br>vater outflow | I undisturbed sample 50 mm<br>diameter<br>ranging to<br>refusal<br>el on date shown<br>No spectrometer<br>el on date shown                                        | and soil de<br>based on u |                                                                         | consistency/density index<br>VS very solt<br>F IIrm<br>St still<br>VSt very still<br>H hard<br>Fb friable<br>VL very loose<br>L loose<br>MD medium dense<br>D dense<br>VD very dense |

Incorporated In Qld.

### engineering log – cored borehole




borehole no: B.H.15

sheet 2 of 3

|         |           |               |                                             |                                                                                    |                      |                                   |                                                                        |                                                                                                                                                             |            | office a                       | nd job no                                                                                               | CANBERRA: C.3166                                                                                                                                             |
|---------|-----------|---------------|---------------------------------------------|------------------------------------------------------------------------------------|----------------------|-----------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |           | oject<br>reho | t:<br>ole location                          | I:<br>TU                                                                           | SABELLA<br>JGGERAN   | A DR<br>NONG                      | L INVESTIGAT<br>IVE, STAGE 5<br>, A.C.T.<br>C.3166/2.                  |                                                                                                                                                             |            | hole co<br>supervi:            | mpleted:                                                                                                | 18.12.84<br>18.12.84<br>schedule 22 (a)(f)                                                                                                                   |
|         |           |               |                                             |                                                                                    |                      |                                   | son 3000 slope                                                         |                                                                                                                                                             |            | R.L. su                        | rface:                                                                                                  | m                                                                                                                                                            |
| ⊢       | -         | -             | -                                           |                                                                                    | 1.5 m 🤈              | Г.Т.<br>Г                         | fluidwater beari                                                       | ng: – deg.                                                                                                                                                  | -          | datum:                         |                                                                                                         |                                                                                                                                                              |
| L       | dri       | llin          | g inform<br>pressure                        |                                                                                    |                      | 0                                 | rock substance                                                         |                                                                                                                                                             |            | strongth                       | rock r<br>defect                                                                                        | nass defects                                                                                                                                                 |
| method  | case-lift | water         | test<br>lugeons                             |                                                                                    | _i depth<br>ش metres | graphic log<br>core loss          | substance of<br>rock type: grain<br>colour, structure, m               | characteristics,                                                                                                                                            | weathering | strength<br>Is (50)<br>גדבר בש | spacing                                                                                                 | defect description<br>thickness, type, inclination,<br>planarity, roughness, coating.<br>particular general                                                  |
| II NMLC |           |               |                                             |                                                                                    |                      |                                   | Borehole B.<br>drilled to<br>Rhyodacitic<br>to medium g<br>orange brow | 2.60 m.<br>TUFF;fine<br>rained,<br>n,cream                                                                                                                  | HW         |                                |                                                                                                         | joints 20°-70°,planar,<br>rouqh & smooth,stained<br>zeolite & clay<br>veneered subvertical<br>joints,planar &<br>irregular, rough                            |
|         |           |               |                                             |                                                                                    | 8                    |                                   |                                                                        |                                                                                                                                                             |            |                                |                                                                                                         |                                                                                                                                                              |
|         |           |               | key<br>method<br>AS<br>AD<br>R<br>W<br>NMLC | auger screw<br>auger drillir<br>roller/tricon<br>washbore<br>NMLC core<br>drilling | 103<br>19 19<br>e    | atter<br>10 Oc<br>water<br>partia | withdrawn                                                              | (350) maximum<br>defective press,<br>in test (kPa)<br>graphic log/core loss<br>core recovered<br>thatching indi-<br>cates material)<br>no core<br>recovered | jre        | MW                             | ath<br>- ghtív<br>weathardd<br>moderataiw<br>weathardd<br>mighty<br>weathardd<br>swrannely<br>weatharad | strength<br>(indirect tensile strength)<br>EL – extremely low<br>VL – very low<br>L – low<br>M – medium<br>H – high<br>VH – very high<br>EH – extremely high |

Incorporated in Qld.

## engineering log – cored borehole



| 50                  | Гe                |                                             | JIE                                                                 |                            | C                                                                 |                                                                                                                                           |                                                                                                                                             |            | office a                         | nd job no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CANBERRA: C.3166                                                                                                                                                                                                 |             |
|---------------------|-------------------|---------------------------------------------|---------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                     | oject :<br>rehole | e location:                                 | IS.<br>TU                                                           | ABELLA<br>GGERAN           | DRI                                                               | INVESTIGATION<br>VE, STAGE 5,<br>A.C.T.<br>C.3166/2.                                                                                      | N -                                                                                                                                         |            | hole co<br>supervis              | mpleted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.12.84<br>18.12.84<br>Schedule 22(a)()                                                                                                                                                                         |             |
| dri                 | ll mo             | del and mo                                  | unting                                                              | : Truck                    | : Eć                                                              | lson 3000 siope:                                                                                                                          | 90 deg.                                                                                                                                     |            | R.L. su                          | rface:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                                                                                                                                                |             |
|                     |                   | ype and len                                 |                                                                     |                            |                                                                   | fluidwaterbearing                                                                                                                         | : – deg.                                                                                                                                    |            | datum:                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |             |
|                     |                   | informati                                   |                                                                     |                            |                                                                   | rock substance                                                                                                                            |                                                                                                                                             |            |                                  | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nass defects                                                                                                                                                                                                     |             |
| method<br>case-lift | ater              | pressure<br>test<br>lugeons                 |                                                                     | depth بـ depth<br>۲ metres | graphic log<br>core loss                                          | substance de<br>rock type: grain c<br>colour, structure, mir                                                                              | haracteristics,                                                                                                                             | weathering | strength<br>Is (50)<br>בבב⊂ש     | defect<br>spacing<br>mm<br>o<br>coord<br>mo<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>coord<br>c | defect description<br>thickness, type, inclination,<br>planarity, roughness, coating<br>particular ger                                                                                                           | ).<br>neral |
| NMLC                |                   | <u>9-0-0-</u>                               |                                                                     | 8<br>9<br>10               | 6                                                                 | Rhyo-Dacitic<br>to medium gra<br>orange brown,<br>mauve,zeolit:                                                                           | ained,cream                                                                                                                                 | HW-<br>MW  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |             |
|                     |                   |                                             |                                                                     | 10,25                      |                                                                   | Borehole B.H<br>terminated a<br>depth.                                                                                                    |                                                                                                                                             | HW         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |             |
|                     |                   | key<br>method<br>AS<br>AD<br>R<br>W<br>NMLC | auger sc<br>buger dr<br>roller/tri<br>washbor<br>NMLC o<br>drilling | one<br>e                   | water<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | ing used<br>riel withdrawi<br>Oct, 73 yater jevel<br>date shown<br>iter inflow<br>etwi drilling water loss<br>implete drilling water loss | pressure 1451<br>350) maximum<br>effective pri<br>in test (kb<br>graphic log/core to<br>(hatching in<br>cates mater<br>no core<br>recovered | red        | er<br>Fr<br>SW<br>MW<br>HW<br>EW | Frem<br>Namiy<br>wrathered<br>nooerati-<br>wrathered<br>highly<br>weathered<br>actionally<br>westhered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | strength<br>(indirect tensile strength)       EL      extremely low       VL      very low       L      low       M      medium       H     -     high       VH     -     very high       EH      extremely high |             |

Incorporated In Qld,

# engineering log – cored borehole



B.H.16 sheet 1 of 2

| ISABELLA<br>project: TUGGERAN                                                                     | ICAL INVESTIGATION -<br>DRIVE, STAGE 2, TUGGERANON<br>ONG, A.C.T.<br>NING C.3166/2.                                                                                                                                                                                                                                                                    | hole commenced:<br>G hole completed:<br>supervised by:<br>log checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.12.84<br>19.12.84<br>Sanedule 22 (6)(0)                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| drill model and mounting: Truck<br>barrel type and length: 1.5 m T                                |                                                                                                                                                                                                                                                                                                                                                        | R.L. surface:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| drilling information                                                                              | rock substance                                                                                                                                                                                                                                                                                                                                         | rock m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ass defects                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| pressure<br>test<br>lugeons<br>depth<br>draw<br>depth<br>draw<br>depth                            | substance description<br>rock type: grain characteristics,<br>colour, structure, minor components                                                                                                                                                                                                                                                      | Bring Strength ls (50) spacing mm o<br>strength spacing mm o<br>strengt | defect description<br>thickness, type, inclination,<br>planarity, roughness, coating.<br>particular general                                                                                                                                                                                                                                                                                                                                            |
| AMIC<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                             | Borehole B.H.16 wash<br>bored to 2.5 m<br>Dacitic TUFF; fine &<br>medium grained, blue &<br>mauve, containing<br>epidote veins.                                                                                                                                                                                                                        | MW<br>SW<br>HW<br>MW<br>SW<br>HW<br>SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | joints 60°-70°, planar,<br>curvilinear, smooth,<br>rough, clay veneer<br>crush seam 0°-5°<br>subhorizontal, planar,<br>stained, partings<br>joint 20°<br>joints 60-70°, planar,<br>rough & smooth,<br>polished surfaces<br>joint 50°, planar, rough<br>jointsubvertical,<br>irregular, rough<br>healed joint, planar,<br>0°,<br>joint 30°, planar, clay<br>veneer, polished &<br>healed subvertical<br>joints<br>planar parting 10-15°,<br>clay veneer |
| AS auger screwing<br>AD auger drilling<br>R roller/tricone<br>W washbore<br>NMLC core<br>drilling | Imaximum     casing used     (350)     maximum     effective press       barrel withdrawn     on test (KPa)     graphic log/core loss       10 Oct, 73     water level<br>date shown     graphic log/core loss       water inflow     graphic differing indiffering indiffering indiffering indiffering indiffering indiffering indiffering mater loss | SW subtly<br>weathered<br>MW moderately<br>weathered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hindowsz (ersine szrengyr)<br>EL – extremely low<br>VE – Very low<br>L – low<br>M – medium<br>H high<br>VH – very high<br>EH – extremely high                                                                                                                                                                                                                                                                                                          |

Incorporated In Qld.

### engineering log – cored borehole



borehole no: B.H.16

sheet 2 of 2

|                | cu bu                                       |                                                                                    |                                                  |                          |                                                                                                                                                                                                                                                                                               |                 | office a                                           | ind job no                                                                                                 | CANBERRA: C.3166                                                                                                                                                                                                                                                                                                                              |  |  |  |
|----------------|---------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| proje<br>borel | ect:<br>hole location:                      | ISA<br>TUG                                                                         | BELLA                                            | DRJ<br>ONG,              | , INVESTIGATION -<br>IVE, STAGE 5,<br>A.C.T.<br>C.3166/2.                                                                                                                                                                                                                                     |                 | hole co<br>supervi                                 |                                                                                                            | 19.12.84<br>19.12.84<br>Schedure 242 (a)(0)                                                                                                                                                                                                                                                                                                   |  |  |  |
|                |                                             |                                                                                    |                                                  |                          | son 3000 slope: 90 deg.<br>fluidwaterbeering: - deg.                                                                                                                                                                                                                                          |                 | R.L. su<br>datum:                                  | R.L. surface: m                                                                                            |                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| _              |                                             |                                                                                    | 1 11 2                                           | . 1 .                    | rock substance                                                                                                                                                                                                                                                                                | -               |                                                    |                                                                                                            | nass defects                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 7              | ing informati                               | T                                                                                  | ⊥i depth<br>rr metres                            | graphic log<br>core loss | substance description<br>rock type: grain characteristics,<br>colour, structure, minor components                                                                                                                                                                                             | weathering      | strength<br>Is (50)                                | defect                                                                                                     | defect description<br>thickness, type, inclination,<br>planarity, roughness, coating.<br>particular general                                                                                                                                                                                                                                   |  |  |  |
| NMLC           |                                             | Piezometer No.1 8.2 to 12.95 m                                                     | 9<br>9<br>10<br>11<br>12<br>12<br>12<br>12<br>12 |                          | Dacitite TUFF; as above<br>Rhyodacitic TUFF; fine<br>to medium grained,<br>orange-brown, cream &<br>green, epidotic<br>zeolite mineralization<br>along joints, alteratio<br>zone.<br>Dacitic TUFF; fine &<br>medium grained,<br>mauve.<br>Borehole B.H.16<br>terminated at<br>required depth. |                 |                                                    |                                                                                                            | <pre>joint 70°,planar<br/>rough,clean<br/>joint 30°,planar<br/>rough,clean<br/>joints 10°,intersect.<br/>joint 70-80°,planar<br/>rough,clay veneer<br/>joint planar polished<br/>60°,clay veneer<br/>-joints 45-70°,planar,<br/>smooth polished,clay<br/>infill &amp; veneer,shear<br/>zone<br/>-joints 10-30°,planar,<br/>rough smooth</pre> |  |  |  |
|                | key<br>method<br>AS<br>AD<br>R<br>W<br>NMLC | auger screw<br>auger drillin<br>roller/tricon<br>weshbore<br>NMLC core<br>drilling | ng                                               |                          | ing used pressure test.<br>(350) maximum effective pre-<br>in test (kPa<br>graphic log/core low<br>(aste shown<br>ter inflow<br>tial drilling water loss<br>mplete drilling water loss                                                                                                        | )<br>med<br>di- | westharing<br>Fr –<br>SW –<br>MW –<br>HW –<br>EW – | fresh<br>slightly<br>weathered<br>modecately<br>weathered<br>highly<br>weathered<br>extremely<br>weathered | strength<br>(indirect tenelle strength)<br>EL – extremely low<br>VL – very low<br>L – kow<br>M – medium<br>H – high<br>VH – very high<br>EH – extremely high                                                                                                                                                                                  |  |  |  |

110-01

#### Coffey & Partners Pty. Ltd. Incomposed In Qid. Unconfined compressive strength test results

.



sheet 1 of 1

| project:<br>location: | GE                    | EOTEC<br>SABEI | CHNI<br>LLA I          | CAL INVESTIGATION -<br>DRIVE, STAGE 5, TUGGERANONG,                                              | chec                               | :: 1<br>ed by: <b>So</b><br>ked by: | 1.2.85<br>chedule 2.2 | (a)(ii)              |
|-----------------------|-----------------------|----------------|------------------------|--------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|-----------------------|----------------------|
| sam                   | ple d <b>et</b> ails  |                | a no                   | rock substance description<br>rock type: grain characteristics, colour,                          | unconfined<br>compressive          | modulus of<br>elasticity            | ratio                 | dry density          |
| location              | depth<br>M<br>from to | sample<br>type | motisture<br>condition | structure, minorcomponents, weathering.                                                          | strength<br>q <sub>u</sub> (MPa) - | E (MPa)                             | E                     | Va (tm3)             |
| в.н.1                 | 5.45 -<br>5.75        |                | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.          | 150                                | 12000                               | 80                    | 2.65                 |
| в.н.2                 | 2.75 -<br>3.00        |                | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.          | 74                                 | 13000                               | 176                   | 2.62                 |
| в.н.б                 | 1.70 -<br>1.90        |                | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.          | 3.3<br>(failed<br>along<br>joint)  |                                     |                       | 2.53                 |
| в.н.7                 | 1.75 -<br>2.00        | NMLC CORE      | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.          | 93                                 | 10000                               | 108                   | 2.59                 |
| в.н.8                 | 2.70 -<br>2.90        | IN             | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately weathered.                         | 42                                 | 5000                                | 119                   | 2.55                 |
| в.н.9                 | 1.00 -<br>1.30        |                | D                      | Dacitic TUFF & DACITE;<br>fine to medium grained,<br>mauve, moderately to<br>slightly weathered. | 205                                | 11000                               | 55                    | 2.59                 |
| в.н.9                 | 3.50 -<br>3.70        |                | D                      | Dacitic TUFF & DACITE;<br>fine to medium grained,<br>mauve, highly to moderately<br>weathered.   | 14.8                               | 1645                                | 110                   | 2.54                 |
|                       |                       |                |                        | · .                                                                                              |                                    |                                     |                       | Schedule 2.2 (a)(ii) |

#### Coffey 1980 artners Pty. Ltd.

## point load strength test results



sheet 1 of 5

| projec<br>locati   | ON: ISA                          | BELL           | A DR                  | L INVESTIGATION -<br>RIVE, STAGE 5, TUGGERANONG, A                                                                 | .с.т. сћес                               | ed by:<br>ked by:                              | Schedule 2.2 (a)(ii)                     |
|--------------------|----------------------------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|
| sample<br>location | details<br>depth<br>m<br>from to | sample<br>type | moisture<br>condition | rock substance description<br>rock type, grain charactistics,<br>colour, structure,<br>minorcomponents, weathering | failure<br>mode<br>S-substance<br>M-mass | point load<br>index<br>I <sub>S</sub> (50) MPa | point load<br>strength<br>classification |
| B.H.1              | 3.25 -<br>3.35                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>highly weathered.                                               | м                                        | 2.0                                            | High Strength                            |
| B.H.1              | 5.75 -<br>5.80                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                            | М                                        | 5.0                                            | Very High<br>Strength                    |
| B.H.2              | 3.50 -<br>3.60                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                            | М                                        | 4.0                                            | Very High<br>Strength                    |
| B.H.3              | 4.30 -<br>4.40                   | CORE           | D                     | Dacitic TUFF; fine to<br>medium grained, orange &<br>red-brown, highly to<br>moderately weathered.                 | м                                        | 1.0                                            | Medium to High<br>Strength               |
| B.H.3              | 6.00 -<br>6.15                   | NMLC CO        | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately weathered.                                           | M/S                                      | 4.0                                            | Very High<br>Strength                    |
| в.н.4              | 4.75 -<br>4.85                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve &<br>cream, highly weathered.                                       | М                                        | 1.0                                            | Medium to High<br>Strength               |
| в.н.4              | 5.30 -<br>5.40                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve &<br>cream, highly weathered.                                       | М                                        | 3.5                                            | Very High<br>Strength                    |
| B.H.4              | 5.50 -<br>5.60                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately weathered.                                           | М                                        | 2.3                                            | High Strength                            |
| B.H.4              | 6.60 -<br>6.70                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately weathered.                                           | M/S                                      | 0.9                                            | Medium Strength                          |

## point load strength test results



sheet 2 of 5

|                    | ON: ISAE                         | BELL           | A DR                  | L INVESTIGATION -<br>IVE, STAGE 5, TUGGERANONG, A                                                                 | chec.<br>.C.T.                           | :<br>zd by:<br>:ked by:                        | Schedule 2.2 (a)(ii)                     |
|--------------------|----------------------------------|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|
| sample<br>location | details<br>depth<br>m<br>from to | sample<br>type | moisture<br>condition | rock substance description<br>rocktype, grain charactistics,<br>colour, structure,<br>minorcomponents, weathering | failure<br>mode<br>S-substance<br>M-mass | point load<br>indēx<br>I <sub>S</sub> (50) MPa | point load<br>strength<br>classification |
| B.H.4              | 7.30 -<br>7.40                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | S                                        | 3.8                                            | Very High<br>Strength                    |
| В.Н.6              | 1.35 -<br>1.45                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>highly weathered.                                              | м                                        | 0.3                                            | Low to Medium<br>Strength                |
| в.н.6              | 2.00 -<br>2.10                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | М                                        | 1.8                                            | High Strength                            |
| в.н.7              | 2.00 -<br>2.15                   | CORE           | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | S                                        | 8.0                                            | Very High<br>Strength                    |
| В.Н.7              | 2.75 –<br>2.85                   | NMLC CO        | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | S                                        | 7.0                                            | Very High<br>Strength                    |
| в.н.8              | 2.90 -<br>3.00                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately weathered.                                          | S                                        | 4.0                                            | Very High<br>Strength                    |
| B.H.8              | 3.55 -<br>3.70                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately weathered.                                          | S                                        | 4.0                                            | Very High<br>Strength                    |
| B.H.8              | 4.65 -<br>4.85                   |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | М                                        | 6.0                                            | Very High<br>Strength                    |

#### Coffey 1808Partners Pty. Ltd.

Incorporated In QId.

## point load strength test results



sheet 3 of 5

|                    | ON: ISA                            | BELLZ    | A DR                   | L INVESTIGATION -<br>IVE, STAGE 5, TUGGERANONG, A.                                                                | chec<br>C.T.                             | ed by:<br>ked by:                              | Schedule 2.2 (a)(ii)                     |
|--------------------|------------------------------------|----------|------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|
| sample<br>location | z details<br>depth<br>m<br>from to | sample " | -moisture<br>condition | rock substance description<br>rocktype, grain charactistics,<br>colour, structure,<br>minorcomponents, weathering | failure<br>mode<br>S-substance<br>M-mass | point load<br>index<br>I <sub>S</sub> (50) MPa | point load<br>strength<br>classification |
| в.н.8              | 5.10 -<br>5.30                     |          | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | S                                        | 6.0                                            | Very High<br>Strength                    |
| в.н.9              | 0.70 -<br>0.85                     |          | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | М                                        | 3.0                                            | High to Very<br>High Strength            |
| в.н.9              | 1.70 -<br>1.95                     |          | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | М                                        | 6.0                                            | Very High<br>Strength                    |
| в.н.9              | 2.35 -<br>2.45                     | CORE     | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>highly weathered.                                              | м                                        | 0.8                                            | Medium Strength                          |
| В.Н.9              | 4.15 -<br>4.30                     | NMEC 0   | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>highly to moderately<br>weathered.                             | М                                        | 1.0                                            | Medium to High<br>Strength               |
| в.н.11             | 1.90 -<br>2.00                     |          | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | S                                        | 5.5                                            | Very High<br>Strength                    |
| B.H.11             | 6.10 -<br>6.20                     |          | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>slightly weathered.                                            | S                                        | 8.0                                            | Very High<br>Strength                    |
| в.н.12             | 3.20 -<br>3.25                     |          | D                      | Rhyodacitic TUFF; fine to<br>medium grained, grey &<br>orange-brown, highly<br>weathered.                         | М                                        | 0.7                                            | Medium Strength<br>Schedule 2.2 (a)(ii)  |

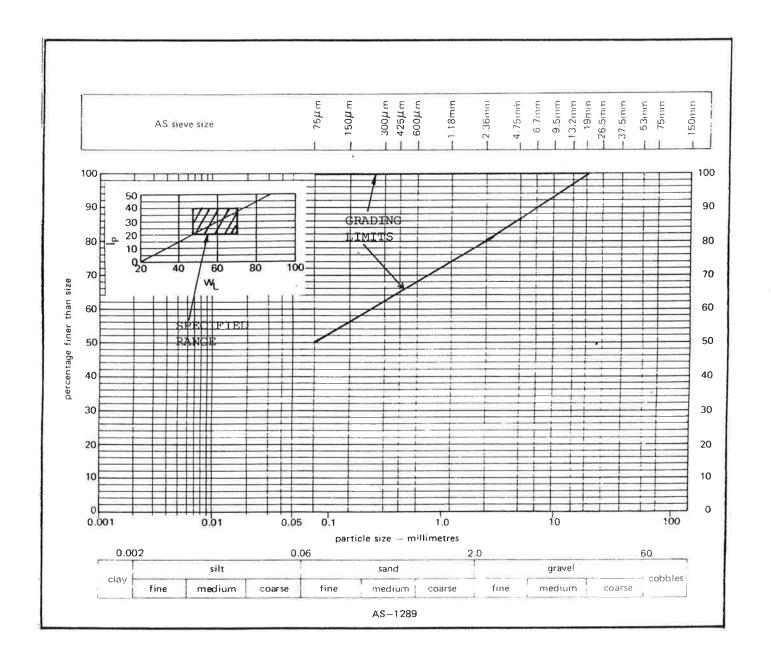
## point load strength test results



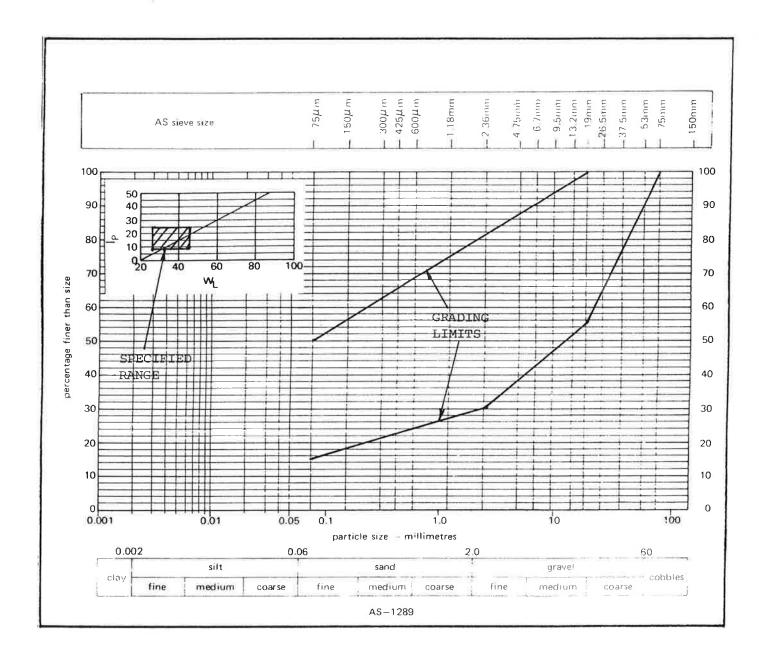
sheet 4 of 5

| sample<br>location | z details<br>depth | 5              |                       |                                                                                                                   | .C.T.                                    |                                                 |                                          |
|--------------------|--------------------|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------|
|                    | from to            | sample<br>type | moisture<br>condition | rock substance description<br>rocktype, grain charactistics,<br>colour, structure,<br>minorcomponents, weathering | failure<br>mode<br>S-substance<br>M-mass | point load<br>`index<br>I <sub>S</sub> (50) MPa | point load<br>strength<br>classification |
| B.H.12             | 3.75 -<br>3.80     |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>highly weathered.                                              | м                                        | 1.0                                             | Medium to High<br>Strength               |
| В.Н.12             | 5.45 -<br>5.60     |                | D                     | Dacitic TUFF; fine to<br>medium grained, mauve,<br>slightly weathered.                                            | M/S                                      | 8.0                                             | Very High<br>Strength                    |
| в.н.13             | 8.05 -<br>8.15     |                | D                     | Dacitic TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weathered.                           | S                                        | < 0.1                                           | Very Low<br>Strength                     |
| B.H.13             | 8.95 -<br>9.00     | M              | D                     | Dacitic TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weathered.                           | S                                        | 0.4                                             | Low to Medium<br>Strength                |
| в.н.13             | 9.75 -<br>9.80     | NMLC CORE      | D                     | Dacitic TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weahtered.                           | S                                        | < 0.1                                           | Very Low<br>Strength                     |
| в.н.13             | 10.10 -<br>10.20   |                | D                     | Dacitic TUFF; fine to<br>medium grained, orange-<br>brown, highly weathered.                                      | S                                        | 0.75                                            | Medium Strength                          |
| В.Н.15             | 2.90 -<br>3.00     |                | D                     | Rhyodacite TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weathered.                        | S                                        | 2.0                                             | High Strength                            |
| B.H.15             | 5.15 -<br>5.30     |                | D                     | Rhyodacite TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weathered.                        | м                                        | 1.5                                             | High Strength                            |

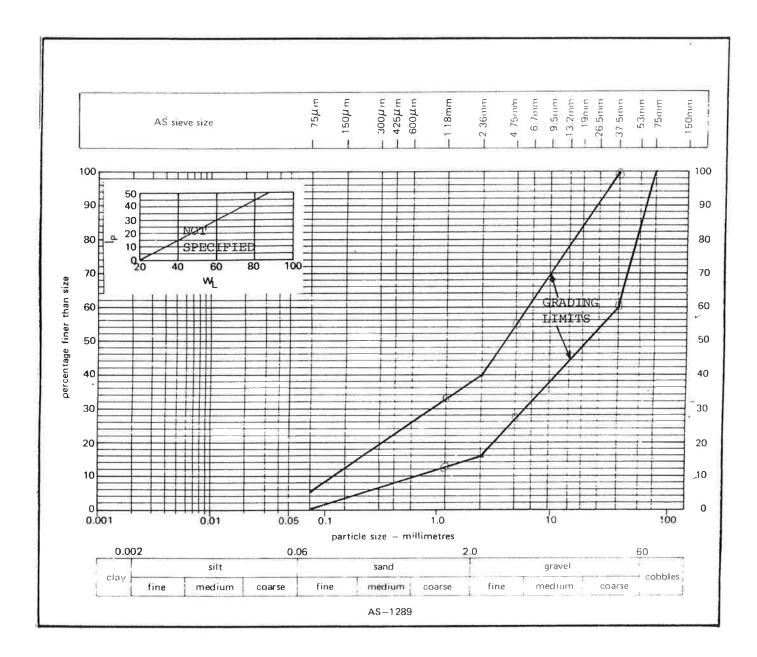
Coffey 1000 rtners Pty. Ltd.


Incorporated In Qld.

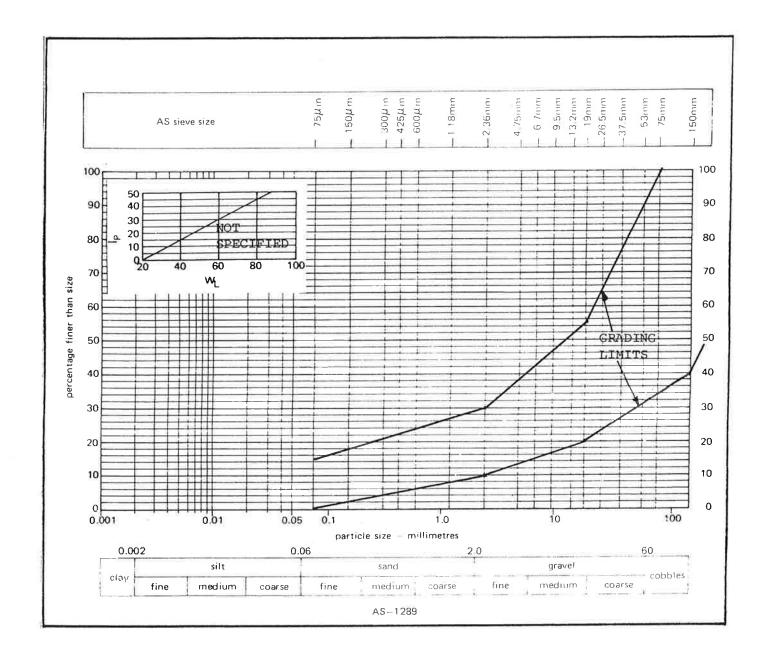
## point load strength test results


sheet 5 of 5

| locati | project: GEOTECHNICAL INVESTIGATION -<br>location: ISABELLA DRIVE, STAGE 5, TUGGERANONG, A.C.T. |                |                        |                                                                                                                   |                                          |                                                |                                          |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------|----------------|------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|--|--|--|--|--|
| sample | details<br>depth<br>(m)<br>from to                                                              | sample<br>type | moist ure<br>condition | rock substance description<br>rocktype, grain charactistics,<br>colour, structure,<br>minorcomponents, weathering | failure<br>mode<br>S-substance<br>M-mass | point load<br>index<br>I <sub>S</sub> (50) MPa | point load<br>strength<br>classification |  |  |  |  |  |
|        | 7.10 -<br>7.15                                                                                  |                | D                      | Rhyodacitic TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weathered.                       | S                                        | 1.5                                            | High Strength                            |  |  |  |  |  |
| B.H.15 | 7.50 -<br>7.60                                                                                  |                | D                      | Rhyodacitic TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weathered.                       | S                                        | 1.8                                            | High Strength                            |  |  |  |  |  |
| в.н.15 | 8.50 -<br>8.55                                                                                  | NMLC CORE      | D                      | Rhyodacitic TUFF; fine to<br>medium grained, ornage-<br>brown & cream, highly<br>weathered.                       | S                                        | 2.0                                            | High Strength                            |  |  |  |  |  |
| в.н.15 | 9.15 -<br>9.30                                                                                  |                | D                      | Rhyodacitic TUFF; fine to<br>medium grained, orange-<br>brown & cream, highly<br>weathered.                       | S                                        | 2.7                                            | High Strength                            |  |  |  |  |  |
| в.н.16 | 3.00 -<br>3.30                                                                                  |                | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>moderately to slightly<br>weathered.                           | S                                        | 6.0                                            | Very High<br>Strength                    |  |  |  |  |  |
| В.Н.16 | 5.40 -<br>5.55                                                                                  |                | D                      | Dacitic TUFF; fine to<br>medium grained, mauve,<br>highly weathered.                                              | М                                        | 0.75                                           | Medium Strength                          |  |  |  |  |  |
|        |                                                                                                 |                |                        |                                                                                                                   |                                          |                                                |                                          |  |  |  |  |  |
|        |                                                                                                 |                |                        | ~                                                                                                                 |                                          |                                                | Schedule 2.2 (a)(ii)                     |  |  |  |  |  |


#### APPENDIX 2.03: COFFEY 1985 – EMBANKMENT MATERIAL DESIGN GRADINGS




#### FIGURE 4: IMPERVIOUS CLAY FILL MATERIALS - ZONE 1



#### FIGURE 5: SEMI-IMPERVIOUS CLAY FILL MATERIALS - ZONE 2

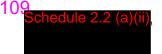


#### FIGURE 6: FILTER MATERIALS - ZONE 3



÷.

#### FIGURE 7: EARTH-ROCKFILL MATERIALS - ZONE 4


APPENDIX 2.04: COFFEY 1987 – RESULTS OF GEOLOGICAL MAPPING OF ROCK FOUNDATION ISABELLA WEIR

RESULTS OF GEOLOGICAL MAPPING

OF ROCK FOUNDATION ISABELLA WEIR ISABELLA DRIVE, STAGE 5A, TUGGERANONG CREEK, A.C.T.

#### THEISS CONTRACTORS PTY LTD

10



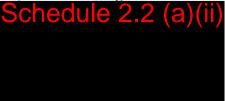
Soil and rock engineering engineering geology groundwater hydrology foundation engineering mining geotechnics dam engineering computer applications construction control & monitoring

your reference our reference date

RCMG:TM - C.3445/1-AC 23rd September, 1987

The Manager Theiss Contractors Pty Ltd P O Box 98 MANUKA A.C.T. 2603

Attention: Schedule 2.2 (a)(i


Dear Sir,

RE:

RESULTS OF GEOLOGICAL MAPPING OF ROCK FOUNDATION, ISABELLA WEIR, ISABELLA DRIVE, STAGE 5A, TUGGERANONG CREEK, A.C.T.

We are pleased to present our report on the engineering geological mapping of rock foundations at the above site. Your attention is drawn to Attachment A included at the end of this report for your information. Please do not hesitate to contact this office for any questions you may have regarding this report.

Yours faithfully COFFEY & PARTNERS PTY LTD





Offices and NATA Registered Laboratories Adelaide Albury-Wodonga Ballina Brisbane Canberra Darwin Melbourne Moruya Newcastle Perth Sydney Townsville Woodridge Rangoon, Burma Mandalay, Burma



Consulting Engineers in the geotechnical sciences Incorporated in Queensland

8c Wiluna Street Fyshwick Canberra

PO Box 152 Fyshwick ACT Australia 2609

Telephone (062) 80 4732



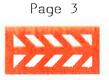
# RESULTS OF GEOLOGICAL MAPPING OF ROCK FOUNDATION ISABELLA WEIR, ISABELLA DRIVE, STAGE 5A, TUGGERANONG CREEK, A.C.T.

In accordance with the Australian National Committee on Large Dams (ANCOLD), the Isabella Weir is a referable structure. To satisfy the requirements for the construction record of the structure, Coffey & Partners Pty Ltd have produced an engineering geological map of the weir foundations, including the cut-off trench, labyrinth wall and wing wall foundations, and the sewer trench cut-off on the left **o**r southern abutment.

The mapping was performed over a period of about thirteen months between June, 1986 and July, 1987. The general mapping programme is outlined below:-

- \* 11th June to 13th June, 1986, mapping of left abutment (north side) cut-off and wing wall foundation area;
- \* 19th June to 24th June, 1986, mapping of right abutment (south side) cut-off and wing wall foundation area;
- \* 20th February to 20th March, 1987, mapping of labyrinth wall foundation, left hand side;
- \* 21st May to 22nd May, 1987, mapping of left abutment extension and sewer trench cut-off;
- \* 16th July to 20th July, 1987, mapping of labyrinth wall foundation, right hand side.

RCMG:TM - C.3445/1-AC




Page 2

The geological mapping was carried out at a scale of 1:100, and involved recording the rock weathering and strength properties and details of structural defects in the excavated rock foundations after preparation and clean-up. The majority of defects are joints with a smaller proportion of sheared zones and/or faults. Major defects and the general trend of joint sets have been plotted graphically on the engineering geology plan of the foundations presented on Drawing C.3445/1-1. The defect features were located by tape measurements on a grid pattern using surveyed construction stations as base locations. An explanation sheet outlining the weathering and strength classifications is included in the Appendix to this report.

The rock is dacite of the lower Silurian age Deakin Volcanics unit. Extremely to highly weathered dacite is yellow-brown, to grey-brown, and the moderately to slightly weathered dacite is purple-brown, grey-brown and blue-grey. The rock has a porphyritic texture with crystals of quartz and feldspar to about 5mm in size. Quartz, epidote, zeolite and chlorite veins to wideths of about 10mm occur throughout the rock mass.

The rock surface is erosional, forming the base of the Tuggeranong Creek channel. Therefore much of the more deeply weathered rock has been removed from the profile by erosion, exposing predominantly moderately to slightly weathered rock close to the soil/rock contact. Foundation levels occured at depths of up to about 2m below this rock surface. The prepared foundation generally comprised moderately weathered and slightly weathered rock of high to very high strength, containing some zones of fresh rock of extremely high strength. Pockets of extremely RCMG:TM - C.3445/1-AC



to highly weathered rock were observed at foundation level, being associated with faulted and sheared zones, or zones of hydrothermal alteration. The more prevalent highly to moderately weathered rock zones of low to medium strength on the northern abutment are mainly related to the natural weathering.

The joint measurements, as marked on the engineering geology plan, have been represented by stereographic projections on Drawings C.3445/1-2 to 1-5. The three joint sets for each of the four delineated foundation areas are presented in Table 1, and it can be seen that the three joint sets are reasonably consistent over the site, particularly Joint Set 1. Joint Set 2 is generally more shallow dipping towards the eastern side of the foundation area, and Joint Set 3 is generally more shallow dipping over the central channel area and southern abutment. In the northern abutment area, Joint Set 3 is much less prominent due to the presence of large undulating erosional surfaces. Other random joints occur throughout the foundation area.

Joint spacings generally range between 100mm and 500mm for the more steeply dipping sets, resulting in a blocky, angular excavated profile. Where the more gently dipping joints are close to the design excavation level, large flat or undulating slabby faces are common. Several weathered seams or sheared zones cross the site. The most prominent sheared zone strikes northwest to south-east across at least 18m of the central channel area and dips 40° to 50° upstream. The rock is deeply weathered or altered up to a distance of about 1m adjacent to this sheared zone. Other shorter and narrower seams strike approximately north-south across the site. RCMG:TM - C.3445/1-AC



Page 4

In general the excavated, prepared and cleaned rock surfaces were mostly tight, with the deeply weathered seams or sheared zones and the more closely jointed zones being hand cleaned to remove soft and loosened materials.

A photographic record was obtained during the mapping programme and a representative selection is presented in the Appendix to this report.



TABLE 1 - JOINT SETS OVER WEIR FOUNDATION AREA

| AREA               | IOC                 | JOINT SET, showing range in dip and dip direction (degrees) | p and               |
|--------------------|---------------------|-------------------------------------------------------------|---------------------|
|                    | Ţ                   | 2                                                           | 3                   |
| Northern Abutment  | 80 to 90/135 to 145 | 80 to 90/240 to 250                                         | 40 to 50/080 to 090 |
| Central Channel    | 80 to 90/145 to 165 | 80 to 90/250 to 270                                         | 20 to 40/080 to 090 |
| Southern Abutment  | 80 to 90/130 to 140 | 70 to 80/245 to 255                                         | 25 to 45/070 to 090 |
| North-eastern Area | 80 to 90/140 to 150 | 65 to 75/240 to 250                                         | 30 to 50/070 to 090 |
|                    |                     |                                                             |                     |

1098

# descriptive terms soil and rock



#### SOIL DESCRIPTIONS

Classification of Material based on Unified Classification System (refer SAA Site Investigation Code AS1726-1975 Add. No. 1 Table D1).

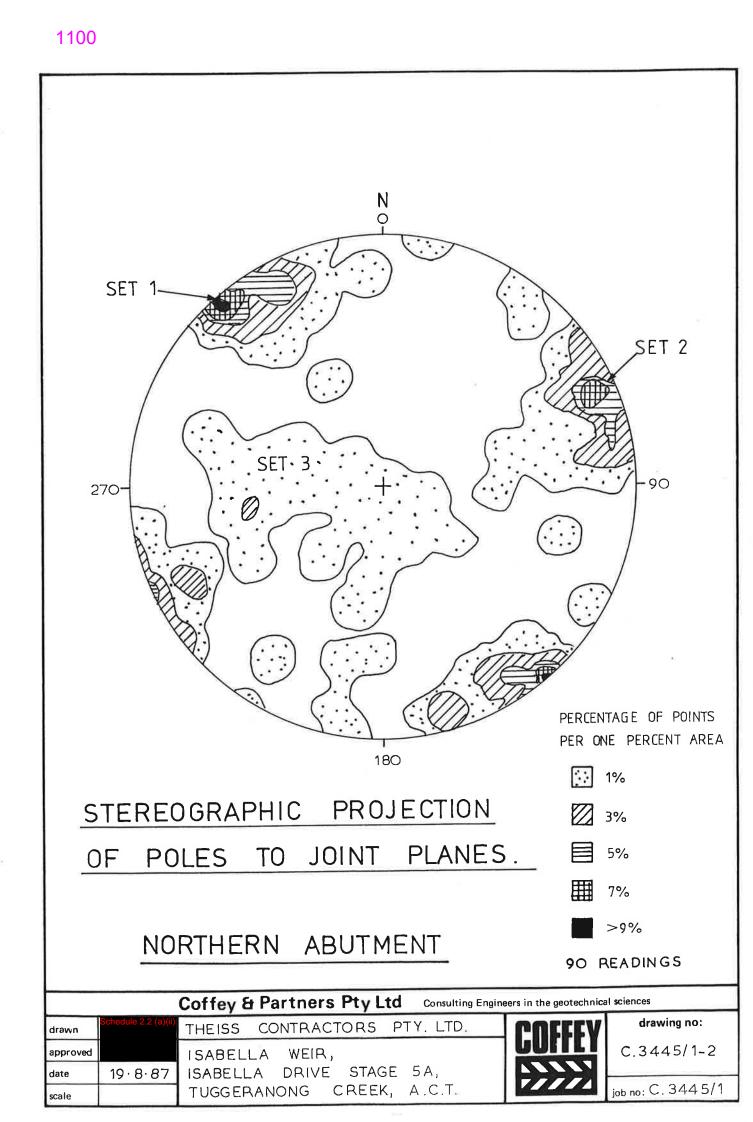
#### Moisture Condition based on appearance of soil

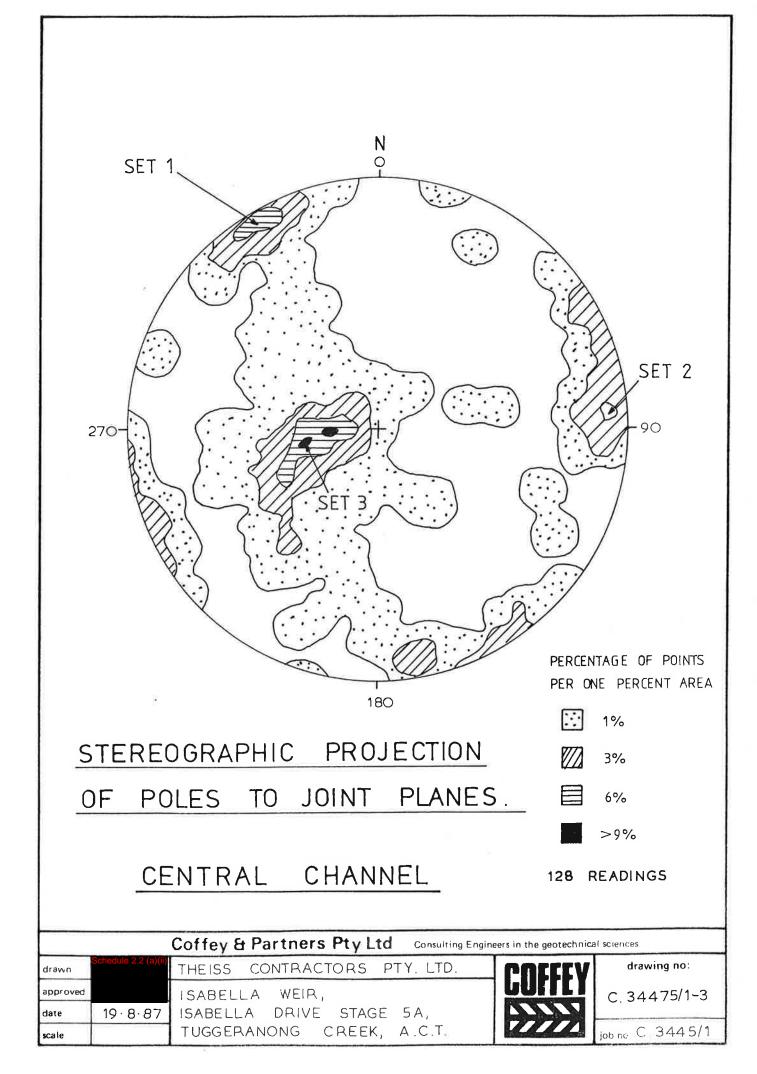
- dry Looks and feels dry; cohesive soils usually hard, powdery or friable, granular soils run freely through hands.
- moist Soil feels cool, darkened in colour; cohesive soils usually weakened by moisture, granular soils tend to cohere, but one gets no free water on hands on remoulding.
- Wet Soil feels cool, darkened in colour; cohesive soils weakened, granular soils tend to cohere, free water collects on hands when remoulding.

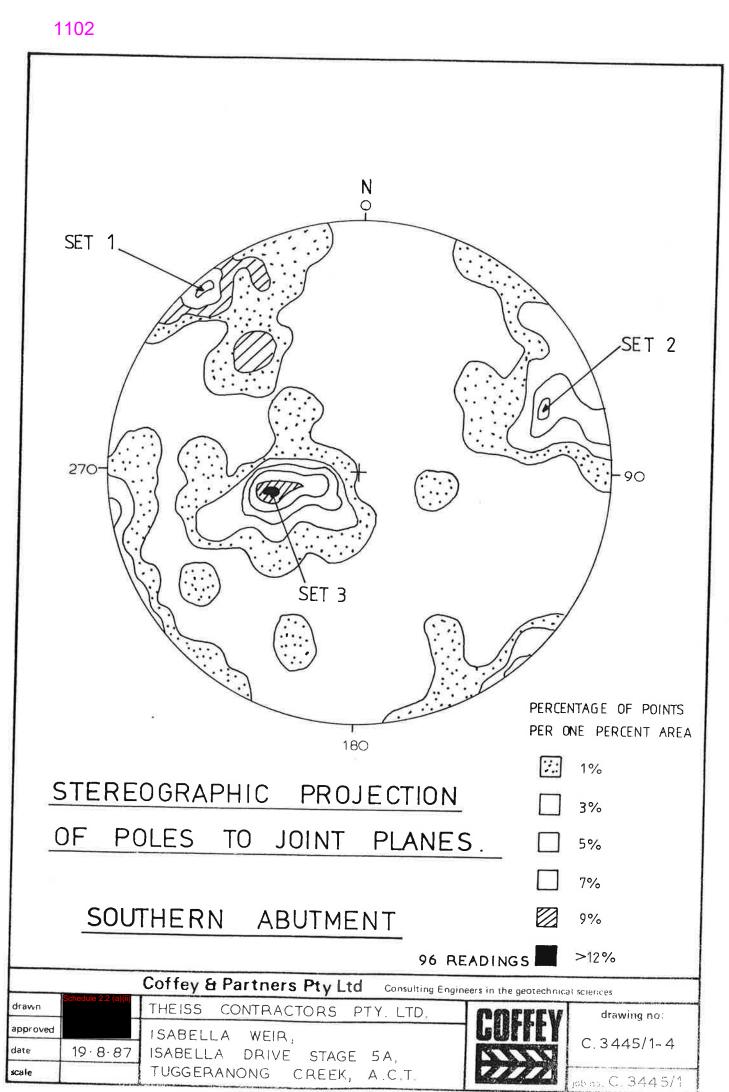
Consistency based on unconfined compressive strength (Qu) (generally estimated or measured by hand penetrometer).

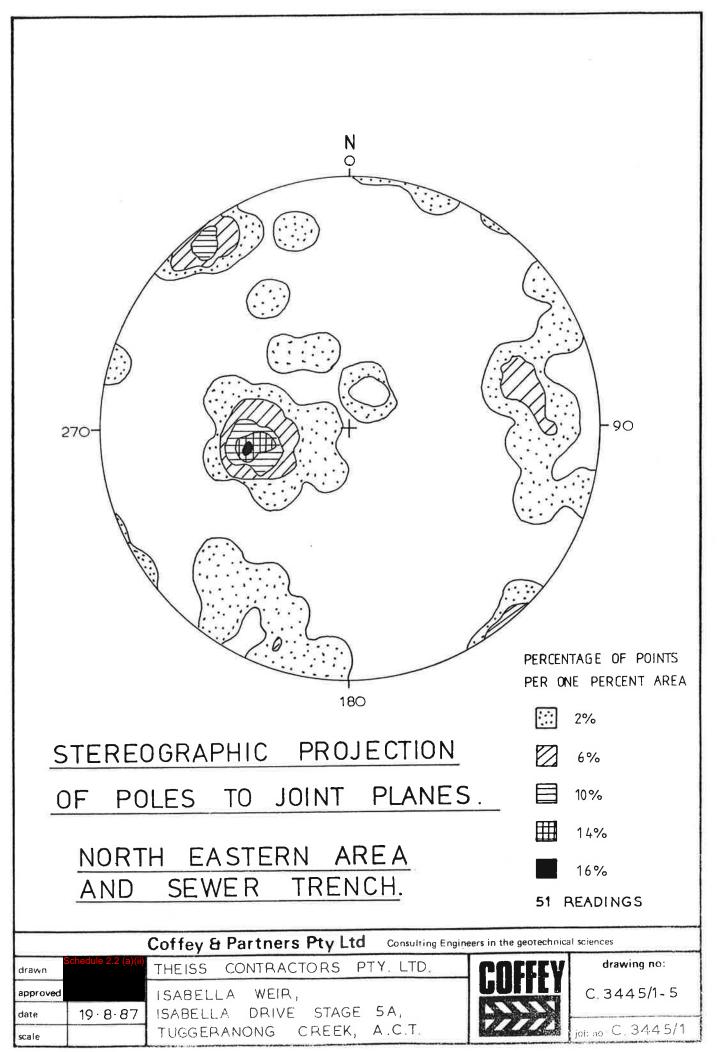
| term                      | very soft     | soft                                               | firm                                                  | stiff                                    | very stif                                      | f harc                             | d                                                                                                                                                                                        |
|---------------------------|---------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qu kPa                    |               | 25 50                                              | 10                                                    | 00                                       | 200 4                                          | 100                                |                                                                                                                                                                                          |
| If soil crumbles on test  | without mear  | ningful result, i                                  | t is describ                                          | ed as fria                               | ble.                                           |                                    |                                                                                                                                                                                          |
| Density Index             | (ge           | nerally estimat                                    | ed or base                                            | d on penet                               | rometer res                                    | ults),                             |                                                                                                                                                                                          |
| term                      | very loose    | loose                                              | mediu                                                 | m dense                                  | de                                             | ense                               | very dense                                                                                                                                                                               |
| density index ID %        | 15            | 3                                                  | 5                                                     |                                          | 65                                             | 8                                  | 35                                                                                                                                                                                       |
| ROCK DESCRIPTIONS         |               |                                                    |                                                       |                                          |                                                |                                    |                                                                                                                                                                                          |
| Weathering based on visua | al assessment |                                                    |                                                       |                                          |                                                |                                    |                                                                                                                                                                                          |
| term                      |               | criterion                                          |                                                       |                                          |                                                |                                    |                                                                                                                                                                                          |
| Fresh:                    |               | Rock substan                                       | ce unaffec                                            | ted by wea                               | ithering.                                      |                                    |                                                                                                                                                                                          |
| Slightly Weathered :      |               | discolouration                                     | n of the roo<br>f the fresh                           | ck substan<br>rock is rec                | ce usually b                                   | y limoni                           | that partial staining or partial<br>ite has taken place. The colour<br>properties are essentially those                                                                                  |
| Moderately Weathered:     |               |                                                    |                                                       |                                          |                                                |                                    | that staining extends throughout<br>f the fresh rock is no longer recog-                                                                                                                 |
| Highly Weathered:         |               | affects the wh<br>of individual r<br>decreased whe | ole of the<br>ninerals ar<br>on compare<br>of iron. T | rock subst<br>e usually e<br>ed to the f | ance and signal<br>vident. Por<br>resh rock su | gns of ch<br>osity an<br>Ibstance, | that limonite staining or bleaching<br>nemical or physical decomposition<br>of strength may be increased or<br>, usually as a result of the leaching<br>original fresh rock substance is |
| Extremely Weathered:      |               |                                                    | emoulded                                              | and can be                               | e classified a                                 | ccording                           | that the rock exhibits soil properties -<br>g to the Unified Classification System,                                                                                                      |

**Strength** based on point load strength index, corrected to 50 mm diameter - 1s(50) (refer I.S.R.M., Commission on Standardisation of Laboratory and Field Tests, Suggested Methods for Determining the Uniaxial Compressive Strength of Rock Materials and the Point Load Strength Index, Committee on Laboratory Tests Document No. 1). (Generally estimated: x indicates test result).


| classification | extremely low | very low | low | medium | high | very high | extremely high |
|----------------|---------------|----------|-----|--------|------|-----------|----------------|
| ls (50) MPa    | 0.0           |          | 1   | 0.3    | 1    | 3         | 10             |


The unconfined compressive strength is typically about 20 x  $I_{S50}$  but the multiplier may range, for different rock types, from as low as 4 to as high as 30.


#### **Defect Spacing**


| classification<br>spacing m | extremely close | very close | close | medium | wide | very wide | extremely wide |
|-----------------------------|-----------------|------------|-------|--------|------|-----------|----------------|
| spacing in                  | 0.0             | 03 0       | .1    | 0.3    | 1    | 3 1       | 0              |

**Defect description** uses terms contained on AS1726 table D2 to describe nature of defect (fault, joint, crushed zone, clay seam (etc.) and character (roughness, extent, coating etc.).











PHOTOGRAPH 1 View from northern abutment, showing clean up of cut-off trench and adjacent foundations. June, 1986



PHOTOGRAPH 2 Northern Abutment, view downstream. June, 1986



PHOTOGRAPH 3 Northern Abutment, detail of abutment foundation. June, 1986



PHOTOGRAPH 4 Southern Abutment, upstream of cut-off trench. June, 1986



PHOTOGRAPH 5 Southern Abutment, view upstream across cut-off trench. June, 1986





PHOTOGRAPH 6 Southern Abutment, general foundations downstream of cut-off trench. June, 1986



PHOTOGRAPH 7 Central Channel, east side, clean up in progress. February, 1987



PHOTOGRAPH 8 Central Channel, east site, clean up of upper levels. February, 1987



PHOTOGRAPH 9 Central Channel, east side, clean up of foundation trenches. February, 1987



PHOTOGRAPH 10 Central Channel, labyrinth wall foundations during clean up. February, 1987



PHOTOGRAPH 11 Central Channel, closely jointed zones in foundation area. February, 1987



PHOTOGRAPH 12 Southern Abutment, showing large gently dipping joints, view south. May, 1987



PHOTOGRAPH 13 Central Channel, west side, general foundation clean up. July, 1987



PHOTOGRAPH 14 Central Channel, west side, detail of shallow dipping joints. July, 1987



PHOTOGRAPH 15 Central Channel, west side, clean up of clay seam across site. July, 1987

APPENDIX 2.05: JACOBS/SKM 2014, BOREHOLE LOGS

| - 2                            | 5                                      | K                                          |         | 1                             |                                             |            |                         |                                                                      | SOIL LOG                                                                                                                                                                                                                 |                          |                          | HOLE NO: <b>SKM-BH</b>                                                                                                                                                                          |
|--------------------------------|----------------------------------------|--------------------------------------------|---------|-------------------------------|---------------------------------------------|------------|-------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJE                          |                                        |                                            |         | a Weii                        |                                             |            |                         |                                                                      | JOB NO : VW07289.02                                                                                                                                                                                                      |                          | I                        | PAGE : 1 OF 1                                                                                                                                                                                   |
|                                |                                        |                                            |         |                               |                                             | 76 (       | 55H                     | MGA94)                                                               | SURFACE ELEVATION : 577.2 (AHD)                                                                                                                                                                                          |                          |                          | LOCATION : RH Crest<br>DIP / AZIMUTH : 90°                                                                                                                                                      |
| RIG TY<br>DATE D               |                                        |                                            |         |                               |                                             | 12/1       | 3                       |                                                                      | CONTRACTOR : Macquarie Drilling LOGGED BY : CHECKED BY                                                                                                                                                                   |                          |                          | STANDARD : AS1726 - 1993                                                                                                                                                                        |
| DRILLING &<br>WATER<br>DETAIL  | Moisture Content                       | Dry Density                                | % Lines | Atterberg                     | SAMPLES &<br>SPT DATA                       | RL (m)     | DEPTH (m)               | GRAPHIC<br>LOG                                                       | MATERIAL DESCRIPTION<br>SOIL TYPE: plasticity or particle characteristic, colour<br>secondary and minor components                                                                                                       | MOISTURE                 | CONSISTENCY /<br>DENSITY | COMMENTS<br>Field Test Data<br>& Other Observations                                                                                                                                             |
|                                | -                                      |                                            |         |                               | 0.50m                                       |            | -                       |                                                                      | Silty Gravelly SAND: (SW) brown, fine to medium gravel                                                                                                                                                                   | D                        | L                        | 0.00: Inferred Zone 2 material                                                                                                                                                                  |
|                                |                                        |                                            |         |                               | SPT<br>10, 3, 6<br>N=9<br>0.95m<br>1.20m    | 576.2-     |                         |                                                                      | Sandy CLAY: (CH)<br>dark brown, high plasticity, mottled yellow - brown, fine to coarse sand,<br>trace fine to medium gravel                                                                                             | M to                     |                          | 0.65: Inferred Zone 1 material                                                                                                                                                                  |
|                                | 23.3                                   | 1.64                                       | 68      | LL=82<br>PL=24<br>LS=17.5     | SPT<br>9, 2, 3<br>N≡5<br>1.50m<br>1.65m     |            |                         |                                                                      |                                                                                                                                                                                                                          | w                        |                          |                                                                                                                                                                                                 |
|                                |                                        |                                            |         |                               | 1.91m<br>2.50m                              | 575.2-     | -2.0                    | 2.5                                                                  | 0m                                                                                                                                                                                                                       |                          | F                        | 1.91: VS Result:<br>Sup = 56kPa<br>Sur = 16kPa                                                                                                                                                  |
|                                |                                        |                                            |         |                               | D<br>2.70m                                  | 574.2-     | 3.0                     |                                                                      | Silty CLAY: (CH)<br>yellow - red to dark yellow brown, high plasticity, trace fine to medium sand,<br>trace fine gravel                                                                                                  | м                        | F to St                  |                                                                                                                                                                                                 |
|                                | 27.2                                   |                                            | 75      | LL=74<br>PL=24<br>LS=16.5     | 3.50m<br>U<br>3.94m                         |            | -                       |                                                                      |                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                 |
| 3/12/13 - 1100                 |                                        |                                            |         |                               |                                             | 573.2-     | 4.0<br><br><br><br><br> |                                                                      |                                                                                                                                                                                                                          |                          |                          | 3.94: VS Result:<br>Sup = 103kPa<br>Sur = 16kPa                                                                                                                                                 |
| <u> </u>                       |                                        |                                            |         |                               | 5.00m<br>SPT<br>3, 3, 3<br>N=6<br>5.45m     | 572.2-     | 5.0                     |                                                                      | mottled yellow brown, grey                                                                                                                                                                                               |                          |                          | 5.00: Ground water level measured at 5.0 metres below ground level                                                                                                                              |
|                                |                                        |                                            |         |                               |                                             | 571.2-     | 6.0                     |                                                                      |                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                 |
| <u>r</u>                       |                                        |                                            |         |                               | 6.50m<br>D                                  | 570.2-     |                         | 6.8                                                                  | <sup>0m</sup><br>Borehole Terminated at 6.8m (Refusal on Rock)                                                                                                                                                           |                          |                          |                                                                                                                                                                                                 |
|                                |                                        |                                            |         |                               |                                             |            |                         |                                                                      |                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                 |
|                                |                                        |                                            |         |                               |                                             | 569.2-     |                         |                                                                      |                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                 |
|                                |                                        | _                                          |         |                               |                                             | -          |                         |                                                                      |                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                 |
| AS A<br>WB V<br>RR R<br>AD/V A | uger<br>/ashb<br>ock R<br>uger I<br>GR | Auger<br>ore<br>olling<br>Drilling<br>OUNE | OWAT    | HQ<br>NQ<br>PQ<br>NMLC<br>bit | HQ Cor<br>NQ Cor<br>PQ Cor<br>NMLC<br>MBOLS | ing<br>ina | ng                      | B Bulk S<br>ES Env S<br>EW Env V<br>HP Hand<br>HV Hand<br>(P: Peak S | SAMPLES & FIELD TESTS<br>bed Sample SPT SPT Sample<br>Sample U Undisturbed Tube Sample<br>Vater Sample<br>Penetrometer MOISTURE CONDITION<br>Vane Shear D = Dry M = Moist W = Wet<br>Su R: Residual Su)<br>Was per 300mm | 0 -<br>4 -<br>e 10<br>30 | 4<br>10                  | CONSISTENCY (Su) {N-value}<br>VS Very Soft < 12 kPa {0-2]<br>S Soft 12 - 25 {2-4}<br>F Firm 25 - 50 {4-8}<br>St Stiff 50 - 100 {8-15}<br>VSt Very Stiff 100 - 200 {15-<br>H Hard > 200 kPa {>3} |

| 5                                 |                  | K                                                     | I       | 1                                     |                                                          |        |             |                                                        | SOIL LOG                                                                                                                                                                                                                                      |                          |                          | HOLE NO: SKM-BH                                                                       |
|-----------------------------------|------------------|-------------------------------------------------------|---------|---------------------------------------|----------------------------------------------------------|--------|-------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------------------------------------------------------------------|
| ROJE                              | СТ               | ; Isa                                                 | bella   | Wei                                   | -                                                        |        |             |                                                        | JOB NO : VW07289.02                                                                                                                                                                                                                           |                          |                          | PAGE : 1 OF 1                                                                         |
| OSITIC                            |                  |                                                       |         |                                       |                                                          |        |             |                                                        | SURFACE ELEVATION :                                                                                                                                                                                                                           |                          |                          | LOCATION : LH Crest                                                                   |
|                                   |                  |                                                       |         |                                       |                                                          |        |             |                                                        | CONTRACTOR : Macquarie Drilling                                                                                                                                                                                                               |                          |                          | DIP / AZIMUTH : 90°                                                                   |
| ATE D                             |                  | LAB                                                   |         |                                       | to 12/                                                   | 2/1.   | 3           |                                                        | LOGGED BY : CHECKED BY                                                                                                                                                                                                                        |                          |                          | STANDARD:AS1726 - 1993                                                                |
| DRILLING &<br>WATER<br>DETAIL     | Moisture Content | Dry Density                                           | % Fines | Atterberg<br>Limits                   | SAMPLES &<br>SPT DATA                                    | RL (m) | DEPTH (m)   | GRAPHIC<br>LOG                                         | MATERIAL DESCRIPTION<br>SOIL TYPE: plasticity or particle characteristic, colour<br>secondary and minor components                                                                                                                            | MOISTURE                 | CONSISTENCY /<br>DENSITY | COMMENTS<br>Field Test Data<br>& Other Observations                                   |
| Not Encountered                   |                  |                                                       |         |                                       | 0.50m<br>SPT<br>11, 13,<br>11 N=24                       | -      | -           |                                                        | Clayey Gravelly SAND: (SW)<br>dark brown, fine to medium grained, fine to medium gravel, low plasticity<br>fines                                                                                                                              | D                        | MD                       |                                                                                       |
|                                   |                  |                                                       |         |                                       | 0.95m                                                    | -      |             |                                                        | .20m                                                                                                                                                                                                                                          |                          |                          | 0.90: Early termination of borehole at 1.2m depth due to obstruction in fill material |
|                                   |                  |                                                       |         |                                       |                                                          |        | -           |                                                        | Borehole Terminated at 1.2m (Refusal on Obstruction)                                                                                                                                                                                          |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        |             |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -2.0        |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        |             |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -3.0        |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        |             |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -4.0        |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | _           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        |             |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        |             |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | <br>6.0<br> |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | _           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | -           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | <br>7.0     |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | Ē           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | Ē           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | <br>8.0<br> |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        |             |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
|                                   |                  |                                                       |         |                                       |                                                          |        | Ē           |                                                        |                                                                                                                                                                                                                                               |                          |                          |                                                                                       |
| AS Au<br>NB W<br>RR Ro<br>AD/V Au | GR               | uger<br>ore<br>olling<br>Orilling<br>OUND<br>Vater le | WAT     | HQ<br>NQ<br>PQ<br>NMLC<br>it<br>ER SY | HQ Cor<br>NQ Cor<br>PQ Cor<br>NMLC<br>MBOLS<br>drilling) | ing    | g           | B Bul<br>ES En<br>EW En<br>HP Har<br>HV Har<br>(P: Pea | SAMPLES & FIELD TESTS       urbed Sample     SPT SPT Sample       (Sample     U       Soil Sample     Water Sample       Water Sample     Water Sample       Dense     Dense       J Vane Shear     D = Dry       Su R: Residual Su)     Deny | 0 -<br>4 -<br>9 10<br>30 | 4<br>10                  | CONSISTENCY (Su) {N-value}           VS         Very Soft         < 12 kPa {0-2}      |

| 2                                                 | 2                                                |                                  |                                       |                                                             |                       |                                      |                                                                                       | SOIL LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                          | HOLE NO: <b>SKM-BH</b>                                                                                                                                                                                                           |
|---------------------------------------------------|--------------------------------------------------|----------------------------------|---------------------------------------|-------------------------------------------------------------|-----------------------|--------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROJECT                                            | -                                                | lsabe                            | lla We                                | ir                                                          |                       |                                      |                                                                                       | JOB NO : VW07289.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | I                        | PAGE : 1 OF 1                                                                                                                                                                                                                    |
|                                                   |                                                  |                                  |                                       |                                                             | 41 (                  | 55H                                  | MGA94)                                                                                | SURFACE ELEVATION : 577.7 (AHD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                          | LOCATION : LH Crest<br>DIP / AZIMUTH : 90°                                                                                                                                                                                       |
| NG TYPE                                           |                                                  |                                  |                                       |                                                             | 12/1:                 | 3                                    |                                                                                       | CONTRACTOR : Macquarie Drilling         LOGGED BY : The contract of t |                        |                          | STANDARD : AS1726 - 1993                                                                                                                                                                                                         |
| DRILLING &<br>WATER<br>DETAIL<br>Moleture Content | _                                                | W Density                        | _                                     | SAMPLES &<br>SPT DATA                                       | RL (m)                | DEPTH (m)                            | GRAPHIC<br>LOG                                                                        | MATERIAL DESCRIPTION<br>SOIL TYPE: plasticity or particle characteristic, colour<br>secondary and minor components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOISTURE               | CONSISTENCY /<br>DENSITY | COMMENTS<br>Field Test Data<br>& Other Observations                                                                                                                                                                              |
|                                                   |                                                  |                                  |                                       |                                                             | -                     | -                                    |                                                                                       | Clayey Gravelly SAND: (SW)<br>dark brown, fine grained, fine to medium gravel, intermediate to low<br>plasticity fines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                      | MD                       | 0.00: Inferred Zone 2 material                                                                                                                                                                                                   |
| 11                                                | .3                                               | 3                                | L                                     | 1.20m<br>SPT<br>6, 3, 3<br>N=6<br>1.65m                     | <b>5</b> 76.7-        |                                      |                                                                                       | fine to medium grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | L                        |                                                                                                                                                                                                                                  |
|                                                   |                                                  |                                  |                                       | 2.00m<br>U                                                  | <b>-\$</b> 75.7-      | -<br>-<br>-2.0<br>-                  |                                                                                       | <sup>3m</sup><br>Silty Sandy CLAY: (Cl)<br>yellow - red, intermediate plasticity, fine to medium sand, trace fine gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D to N                 | / F                      | 1.80: Inferred Zone 1 material<br>2.45: VS Result: Unable to penetrate soil<br>in push tube with vane shear,<br>Su >= 222kPa                                                                                                     |
|                                                   |                                                  |                                  |                                       | 2.45m<br>2.80m<br>D<br>3.00m                                |                       |                                      |                                                                                       | Sandy Gravelly CLAY: (CI - CH)<br>yellow - red to dark brown, fine to medium sand, fine to medium gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | VSt<br>F to St           | 2.45: VS Result: Unable to penetrate soil<br>in push tube with vane shear                                                                                                                                                        |
| 13/12/13 - 0900                                   |                                                  |                                  |                                       | SPT<br>2, 3, 5<br>N=8<br><u>3.45m</u>                       |                       | -                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                          |                                                                                                                                                                                                                                  |
| <u> </u>                                          |                                                  |                                  |                                       | 4.00m<br>D                                                  | 573.7-                | <br>4.0<br>                          |                                                                                       | <sup>3m</sup><br>Silty Gravelly CLAY (CI - CH)<br>dark red - brown, intermediate to high plasticity, fine to medium gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | м                      |                          | <ul> <li>3.70: Material collapsed in hole overnight<br/>and required minor redrilling in order to<br/>measure the ground water level.</li> <li>3.90: Ground water level measured at 3.9<br/>metres below ground level</li> </ul> |
|                                                   |                                                  |                                  |                                       | 4.50m<br>SPT<br>4, 4, 6<br>N=10<br>4.95m                    | 572.7-                | <br><br>5.0                          | 4.9                                                                                   | Silty CLAY: (CH)<br>dark yellow - brown to yellow - red, high plasticity, some fine to medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M to<br>W              | St<br>F to St            |                                                                                                                                                                                                                                  |
| 29                                                | 0.1 1                                            | .5 7                             | ) LL=78<br>PL=24<br>LS=17             | <u>5.50m</u><br>U                                           |                       | -                                    |                                                                                       | gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                          |                                                                                                                                                                                                                                  |
|                                                   |                                                  |                                  |                                       | <u>5.95m</u>                                                | 571.7-                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                          | 5.95: VS Result:<br>Sup = 73kPa<br>Sur = 16kPa                                                                                                                                                                                   |
|                                                   |                                                  |                                  |                                       | 7.00m<br>D                                                  | 570.7-                | _<br>_7.0                            |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                          |                                                                                                                                                                                                                                  |
|                                                   |                                                  |                                  |                                       | 7.50m<br>SPT<br>3, 3, 3<br>N=6<br>7.95m                     |                       |                                      |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w                      |                          |                                                                                                                                                                                                                                  |
|                                                   |                                                  |                                  |                                       | 8.80m                                                       | -<br>569.7-<br>-<br>7 | 8.0<br><br><br><br><br><br><br><br>  | <u></u>                                                                               | om<br>Borehole Terminated at 8.8m (Refusal on Rock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                          |                                                                                                                                                                                                                                  |
| <u> </u>                                          | d Aug<br>r<br>nbore<br>Rollin<br>r Drill<br>GROU | ng<br>ing - V<br>NDWA<br>er leve | HQ<br>NQ<br>PQ<br>NML<br>bit<br>TER S | HQ Cou<br>NQ Cou<br>PQ Cor<br>C NMLC<br>(MBOLS<br>drilling) | ring<br>ing<br>Corin  | g                                    | B Bulk S<br>ES Env S<br>EW Env V<br>HP Hand I<br>HV Hand V<br>(P: Peak S<br>N SPT blo | SAMPLES & FIELD TESTS       DENSITY (N         bed Sample       SPT SPT Sample       U Undisturbed Tube Sample         Sample       U Undisturbed Tube Sample       L Loose         Vater Sample       W Water Sample       MD Medium Dense         Penetrometer       MOISTURE CONDITION       D Dense         Vane Shear       D = Dry       M = Moist       W = Wet         van Residual Su)       D = Dry       M = Moist       W = Wet         vans per 300mm       weight       Weight       WD Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 -<br>4 -<br>10<br>30 | 4<br>10                  | CONSISTENCY (Su) {N-value}<br>VS Very Soft < 12 kPa {0-2}<br>S Soft 12 - 25 {2-4}<br>F Firm 25 - 50 {4-8}<br>St Stiff 50 - 100 {8-15}<br>VSt Very Stiff 100 - 200 {15-3<br>H Hard > 200 kPa {30                                  |

|                      | 5                          |                  |                                                |                                |                      |                             |                                                     |                      |                              |                                                              | SOIL LOG                                                                                                                                                                                                                                                                                                                                                                                          |                           |                          | HOLE NO: SKM-BH                                                                                                                                                                                 |
|----------------------|----------------------------|------------------|------------------------------------------------|--------------------------------|----------------------|-----------------------------|-----------------------------------------------------|----------------------|------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PF                   |                            | СТ               |                                                | Isab                           | lla                  | Weir                        |                                                     |                      |                              |                                                              | JOB NO : VW07289.02                                                                                                                                                                                                                                                                                                                                                                               |                           |                          | PAGE : 1 OF 1                                                                                                                                                                                   |
| -                    |                            |                  |                                                |                                |                      |                             |                                                     | 171                  | (55⊦                         | I MGA94                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          | LOCATION : RH D/S Toe                                                                                                                                                                           |
| RIC                  | G TY                       | ΈE               | : In                                           | nov                            | ativ                 | /e E5                       | 0                                                   |                      |                              |                                                              | CONTRACTOR : Macquarie Drilling                                                                                                                                                                                                                                                                                                                                                                   |                           |                          | DIP / AZIMUTH : 90°                                                                                                                                                                             |
| )A                   | TE I                       | DRIL             | LE                                             | D: '                           | 2/                   | 12/13                       | to 12/                                              | 12/1                 | 13                           |                                                              | LOGGED BY : STORE CHECKED BY : STO                                                                                                                                                                                                                                                                                                                                                                |                           |                          | STANDARD : AS1726 - 1993                                                                                                                                                                        |
|                      |                            | Moisture Content | Τ                                              | AB I                           | AC % FINES           | Atterberg<br>Limits         | SAMPLES &<br>SPT DATA                               | RL (m)               | DEPTH (m)                    | GRAPHIC<br>LOG                                               | MATERIAL DESCRIPTION<br>SOIL TYPE: plasticity or particle characteristic, colour<br>secondary and minor components                                                                                                                                                                                                                                                                                | MOISTURE                  | CONSISTENCY /<br>DENSITY | COMMENTS<br>Field Test Data<br>& Other Observations                                                                                                                                             |
| ۱.                   |                            |                  |                                                |                                |                      |                             | 0.50m                                               |                      | -                            |                                                              | Gravelly SAND: (SW) brown, fine sand fine to medium gravel, some silt                                                                                                                                                                                                                                                                                                                             | D                         | MD                       | 0.00: Roots in top 100mm                                                                                                                                                                        |
|                      | Not Encountered            |                  |                                                |                                |                      |                             | SPT<br>12, 13,<br>10 N=2<br>0.95m                   | 3                    |                              |                                                              | dark brown, medium grained, sub-rounded grains, fine to coarse gravel                                                                                                                                                                                                                                                                                                                             | D to I                    | u                        | 1.00: Inferred Zone 3 filter material<br>between 1.0 metres to 2.0 metres below<br>ground level<br>1.33: VS Result: Unable to penetrate soil                                                    |
|                      | Not                        |                  |                                                |                                |                      |                             | 1.50m<br>SPP<br>16, 18,<br>15 N=3<br>1.95m<br>2.00m |                      |                              |                                                              | .00m                                                                                                                                                                                                                                                                                                                                                                                              |                           | D                        | in sample tube with vane shear                                                                                                                                                                  |
|                      |                            | 10.1             |                                                |                                | 11                   | LL=28<br>PL=15<br>LS=9      | D<br>2.30m                                          |                      |                              |                                                              | Gravelly Clayey SAND: (SC)<br>dark brown to dark grey, fine to medium grained, low plasticity fines, some<br>fine to medium gravel                                                                                                                                                                                                                                                                |                           |                          |                                                                                                                                                                                                 |
| L.                   |                            |                  |                                                |                                |                      |                             |                                                     | 570.9                |                              |                                                              | .85m<br>Borehole Terminated at 2.85m (Refusal on Rock)                                                                                                                                                                                                                                                                                                                                            |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     |                      |                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     | 569.9                |                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     | 568.9                | -<br>-<br>-<br>-<br>-<br>5.0 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     |                      |                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     | 567.9                | 6.0                          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     | 566.9                | -<br>-<br>-<br>-<br>-<br>7.0 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     |                      |                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     | 565.9                | 8.0                          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
|                      |                            |                  |                                                |                                |                      |                             |                                                     |                      |                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |                                                                                                                                                                                                 |
| HA<br>AS<br>WI<br>RF | 6 /<br>B N<br>R F<br>D/V / | GI<br>C =        | Aug<br>oore<br>Rollir<br>Drilli<br>ROU<br>Wate | ng<br>ing - '<br>NDW<br>er lev | √ bi<br>ATI<br>el (s | HQ<br>NQ<br>PQ<br>NMLC<br>t | HQ Co<br>NQ Co<br>PQ Co<br>NMLC<br>MBOLS            | ring<br>ring<br>Cori | ng                           | B Bu<br>ES Er<br>EW Er<br>HP Ha<br>HV Ha<br>(P: Pea<br>N SPT | SAMPLES & FIELD TESTS       DENSITY         urbed Sample       SPT SPT Sample         Sample       U         Soil Sample       W         Water Sample       U         Water Sample       W         Vater Sample       MD         Vater Sample       MD         Penetrometer       MOISTURE CONDITION         J Vane Shear       D = Dry         Sow sper 300mm       penetration by hammer weight | 0 -<br>4 -<br>se 10<br>30 | 4<br>10                  | CONSISTENCY (Su) {N-value}<br>VS Very Soft < 12 kPa {0-2}<br>S Soft 12 - 25 {2-4}<br>F Firm 25 - 50 {4-8}<br>St Stiff 50 - 100 {8-15<br>VSt Very Stiff 100 - 200 {15-1<br>H Hard > 200 kPa {>30 |

|                              | 5                       |                                     |                                          |                |                              |                                            |                         |                     |                                             | SOIL LOG                                                                                                                                                                                                                                                                                       |                            |                          | HOLE NO: SKM-BH                                                                                                                                                   |
|------------------------------|-------------------------|-------------------------------------|------------------------------------------|----------------|------------------------------|--------------------------------------------|-------------------------|---------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJ                         | -                       |                                     |                                          |                | a We                         | ir                                         |                         |                     |                                             | JOB NO : VW07289.02                                                                                                                                                                                                                                                                            |                            |                          | PAGE : 1 OF 1                                                                                                                                                     |
|                              |                         |                                     |                                          |                |                              |                                            | 108                     | (55⊦                | I MGA94                                     |                                                                                                                                                                                                                                                                                                |                            |                          | LOCATION : LH Crest                                                                                                                                               |
| rig t                        | YPE                     | Ξ:                                  | Inn                                      | ovat           | ive E                        | 50                                         |                         |                     |                                             | CONTRACTOR : Macquarie Drilling                                                                                                                                                                                                                                                                |                            |                          | DIP / AZIMUTH : 90°                                                                                                                                               |
| DATE                         | DR                      | RILL                                | ED                                       | : 13           | /12/1                        | 3 to 13                                    | /12/                    | 13                  |                                             | LOGGED BY : CHECKED BY : CHECKED BY :                                                                                                                                                                                                                                                          |                            |                          | STANDARD : AS1726 - 1993                                                                                                                                          |
| DRILLING &<br>WATER          | DETAIL                  | Moisture Content                    | Dry Density                              | % Fines        | Atterberg                    | SAMPLES &<br>SPT DATA                      | RL (m)                  | DEPTH (m)           | GRAPHIC<br>LOG                              | MATERIAL DESCRIPTION<br>SOIL TYPE: plasticity or particle characteristic, colour<br>secondary and minor components                                                                                                                                                                             | MOISTURE                   | CONSISTENCY /<br>DENSITY | COMMENTS<br>Field Test Data<br>& Other Observations                                                                                                               |
|                              |                         | -                                   |                                          |                |                              | 0.50m                                      |                         | -                   |                                             | Silty Gravelly SAND: (SW) yellow - red, brown, fine grained, fine to medium gravel                                                                                                                                                                                                             | D                          | MD                       |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              | 0.50m<br>SPT<br>14, 15,<br>13 N=2<br>0.95m |                         |                     |                                             | fine to medium grained                                                                                                                                                                                                                                                                         |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              | 1.20m<br>D<br>1.50m                        |                         | 0                   |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         | 10                                  |                                          | 40             |                              | SPT<br>7, 8, 7<br>N=15<br>1.95m            |                         |                     |                                             |                                                                                                                                                                                                                                                                                                | D to f                     | Ā                        |                                                                                                                                                                   |
| Not Encountered              |                         |                                     |                                          |                |                              | 2.50m                                      | 576.                    | 2.0                 |                                             | Sandy CLAY: (CI)<br>dark brown, intermediate plasticity, fine to medium sand, some medium<br>gravel                                                                                                                                                                                            |                            | St                       |                                                                                                                                                                   |
| Not                          |                         |                                     |                                          |                |                              | U<br>                                      | 1                       |                     |                                             | 5 00m                                                                                                                                                                                                                                                                                          |                            |                          | 2.89: VS Result: Unable to penetrate soil                                                                                                                         |
|                              |                         |                                     |                                          |                |                              |                                            | 575.                    | 03.0<br>            |                                             | Sitty CLAY: (CI - CH)<br>yellow - red to dark yellow brown, intermediate to high plasticity, trace fine<br>to medium sand and gravel                                                                                                                                                           |                            | St to<br>VSt             | in sample tube with vane shear                                                                                                                                    |
|                              |                         |                                     |                                          |                |                              | 4.00m                                      | 1 574.                  |                     |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              | SPT<br>7, 12, 2<br>N=38<br>4.45m           | 1                       |                     |                                             | samm<br>Sandy CLAY: (CI - CL)<br>red - brown, mottled grey, intermediate to low plasticity, medium to coarse                                                                                                                                                                                   |                            | н                        | 4.30: Possible cobble in fill, hard drilling                                                                                                                      |
| <b>r</b>                     |                         |                                     |                                          |                |                              | 4.80m<br>D                                 | _                       |                     |                                             | sand, sub-rounded, fine to coarse gravel 190m Borehole Terminated at 4.9m (Refusal on Rock)                                                                                                                                                                                                    |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              |                                            |                         |                     |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              |                                            | 572.                    | -<br>-<br>-<br>06.0 |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              |                                            |                         |                     |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              |                                            | 571.                    | 07.0                |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              |                                            |                         |                     |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              |                                            | 570.                    | D8.0                |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     |                                          |                |                              |                                            |                         |                     |                                             |                                                                                                                                                                                                                                                                                                |                            |                          |                                                                                                                                                                   |
|                              |                         |                                     | ח                                        | RILLI          | NG                           |                                            |                         | -                   |                                             | SAMPLES & FIELD TESTS DENSITY                                                                                                                                                                                                                                                                  | (N-value                   | <u> </u>                 | CONSISTENCY (Su) {N-value}                                                                                                                                        |
| HA<br>AS<br>WB<br>RR<br>AD/V | Aug<br>Wa<br>Roc<br>Aug | jer<br>shbo<br>k Ro<br>jer D<br>GRO | uger<br>Ire<br>Illing<br>rilling<br>DUNI | g - V I<br>DWA | HQ<br>NQ<br>PQ<br>NML<br>pit | HQ Co<br>NQ Co<br>PQ Co<br>C NMLC          | oring<br>oring<br>C Cor | ing                 | B Bul<br>ES En<br>EW En<br>HP Har<br>HV Har | turbed Sample     SPT SPT Sample     DELGTIT       (Sample     U     Undisturbed Tube Sample     VL     Very Loose       (Soil Sample     W     Water Sample     L     Loose       (Water Sample     MOISTURE CONDITION     D     Dense       Vane Shear     D = Dry     M = Moist     W = Wet | 0 -<br>4 -<br>Ise 10<br>30 | 4<br>10                  | VS Very Soft < 12 kPa {0-2}<br>S Soft 12 - 25 {2-4}<br>F Firm 25 - 50 {4-8}<br>St Stiff 50 - 100 {8-15<br>VSt Very Stiff 100 - 200 {15-7<br>H Hard > 200 kPa {>30 |

|                     | 5                       |                                              | K                                                  |                 |                         |                                             |               |                                                                                             |                                                    | SOIL LOG                                                                                                                                                                                                                                                    |                          |                          | HOLE NO: SKM-BH                                                                                                                                                |
|---------------------|-------------------------|----------------------------------------------|----------------------------------------------------|-----------------|-------------------------|---------------------------------------------|---------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJ                | JEC                     | Т                                            | : Isa                                              | abella          | a Wei                   | r                                           |               |                                                                                             |                                                    | JOB NO : VW07289.02                                                                                                                                                                                                                                         |                          |                          | PAGE : 1 OF 1                                                                                                                                                  |
| POSI                | TIO                     | N                                            | : E:                                               | 205             | 964, N                  | I: 5881                                     | 89 (          | 55H                                                                                         | MGA94                                              | 4) SURFACE ELEVATION : 577.8 (AHD)                                                                                                                                                                                                                          |                          |                          | LOCATION : RH Crest                                                                                                                                            |
| rig t               | ΥP                      | E :                                          | Inno                                               | ovati           | ve E5                   | 0                                           |               |                                                                                             |                                                    | CONTRACTOR : Macquarie Drilling                                                                                                                                                                                                                             |                          |                          | DIP / AZIMUTH : 90°                                                                                                                                            |
| DATE                | DF                      | RILL                                         |                                                    |                 |                         | to 13/                                      | 12/1          | 3                                                                                           |                                                    |                                                                                                                                                                                                                                                             | -                        | 1                        | STANDARD : AS1726 - 1993                                                                                                                                       |
| DRILLING &<br>WATER | DETAIL                  | Moisture Content                             | Dry Density                                        | 8 DA<br>% Lines | Atterberg               | SAMPLES &<br>SPT DATA                       | RL (m)        | DEPTH (m)                                                                                   | GRAPHIC<br>LOG                                     | MATERIAL DESCRIPTION<br>SOIL TYPE: plasticity or particle characteristic, colour<br>secondary and minor components                                                                                                                                          | MOISTURE                 | CONSISTENCY /<br>DENSITY | COMMENTS<br>Field Test Data<br>& Other Observations                                                                                                            |
|                     |                         |                                              |                                                    |                 |                         | 0.50m                                       | 576.8         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                    | Gravelly SAND: (SW)<br>yellow red to brown, fine to medium grained, fine to coarse gravel, some silt<br>1.00m<br>Sandy CLAY: (CI) / Clayey SAND: (SC)                                                                                                       | D<br>D to M              | MD<br>MD7<br>VSt         | 0.00: Inferred Zone 2 material                                                                                                                                 |
|                     |                         |                                              |                                                    |                 |                         | 1.50m<br>SPT<br>5, 8, 10<br>N=18            |               |                                                                                             |                                                    | dark brown, intermediate plasticity, fine to medium sand, trace fine to medium gravel                                                                                                                                                                       |                          |                          |                                                                                                                                                                |
|                     |                         | 7.1                                          |                                                    | 26              |                         | 1.95m<br>2.00m<br>D                         | <b>5</b> 75.8 | -2.0                                                                                        |                                                    | 2.00m<br>Clayey SAND: (SC)<br>yellow - red, fine to coarse sand, sub-rounded, some fine to coarse gravel                                                                                                                                                    |                          | MD                       | -                                                                                                                                                              |
|                     |                         |                                              |                                                    |                 |                         | 2.50m<br>3.00m<br>SPT                       | 574.8         | 3.0                                                                                         |                                                    |                                                                                                                                                                                                                                                             |                          |                          |                                                                                                                                                                |
|                     |                         |                                              |                                                    |                 |                         | 8, 7, 10<br>N=17<br><u>3.45m</u>            |               | -                                                                                           |                                                    | 3.50m<br>Gravelly Sandy CLAY: (CI)                                                                                                                                                                                                                          |                          | St to<br>VSt             | 3.50: Inferred Zone 1 material                                                                                                                                 |
|                     |                         | 16.8                                         | 1.83                                               |                 | LL=39<br>PL=14<br>LS=11 | 4.00m<br>D<br>4.30m<br>U                    | 573.8         | 4.0                                                                                         |                                                    | dark brown, intermediate plasticity, fine to coarse sand, medium to coarse<br>gravel                                                                                                                                                                        |                          |                          | 3.80: Four 30mm sized cobbles within clay strata                                                                                                               |
|                     |                         |                                              |                                                    |                 |                         | 4.74m                                       | 572.8         | 5.0                                                                                         |                                                    | 5.00m<br>Silty CLAY: (CH)<br>dark green - brown to green - grey, trace fine gravel                                                                                                                                                                          | м                        |                          | 4.74: VS Result:<br>Sup = 135kPa<br>Sur = 16kPa                                                                                                                |
| 13/12/13 - 1300     | 200                     |                                              |                                                    |                 |                         | 5.50m<br>D<br>6.00m                         |               | -                                                                                           |                                                    |                                                                                                                                                                                                                                                             |                          |                          |                                                                                                                                                                |
| L<br>⊇              |                         |                                              |                                                    |                 |                         | U<br>6.26m                                  |               | 6.0                                                                                         |                                                    | 8.50m<br>Borehole Terminated at 6.5m (Refusal on Rock)                                                                                                                                                                                                      | M to<br>W                | St                       | 6.00: Ground water level measured at 6.2<br>metres below ground level<br>6.26: VS Result:<br>Sup = 79kPa<br>Sur = 16kPa<br>6.30: UI63 push tube sample did not |
|                     |                         |                                              |                                                    |                 |                         |                                             | 570.8         | -<br>-<br>-<br>7.0<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                       |                                                    |                                                                                                                                                                                                                                                             |                          |                          | 6.30: U63 push tube sample did not<br>advance to full depth, likely refusal on<br>floaters / rock                                                              |
|                     |                         |                                              |                                                    |                 |                         |                                             | 569.8         | 8.0<br><br><br><br><br>                                                                     |                                                    |                                                                                                                                                                                                                                                             |                          |                          |                                                                                                                                                                |
|                     | Aug<br>Wa<br>Roo<br>Aug | ger<br>Ishbo<br>ck Ro<br>ger D<br>GRO<br>= W | uger<br>ore<br>olling<br>orilling<br>DUNE<br>/ater | OWAT<br>level ( | HQ<br>NQ<br>PQ<br>NML(  | HQ Cor<br>NQ Cor<br>PQ Cor<br>NMLC<br>MBOLS | ing<br>ing    | ng                                                                                          | B Bu<br>ES Er<br>EW Er<br>HP Ha<br>HV Ha<br>(P: Pe | SAMPLES & FIELD TESTS<br>sturbed Sample SPT SPT Sample<br>uk Sample U Undisturbed Tube Sample<br>vo Soil Sample W Water Sample<br>nd Penetrometer MOISTURE CONDITION<br>nd Vane Shear D = Dry M = Moist W = Wet<br>ak Su R: Residual Su)<br>Flows per 300mm | 0 -<br>4 -<br>e 10<br>30 | 4<br>10                  | CONSISTENCY (Su) {N-value}           VS         Very Soft         <12 kPa                                                                                      |

# APPENDIX 2.06: JACOBS/SKM 2014, LABORATORY TESTING CERTIFICATES



#### **TEST RESULTS**

AS 1289.2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1, 3.6.1, 3.8.1 & 6.4.1 (Clauses 4 and 5a)

| Client SIN                          | , <i>Croydon 3136</i><br>CLAIR KNIGHT MERZ (MELBOURNE)<br>07289.02 ISABELLA WEIR                                         |                                 |             |                            | Te<br>Da      | te of l<br>sted b<br>te tes<br>ecked | y<br>ted         | 08/01<br>Schedulez<br>19/12<br>Schedulez | /13<br>2/13-7/    | /1/14              |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|----------------------------|---------------|--------------------------------------|------------------|------------------------------------------|-------------------|--------------------|
|                                     |                                                                                                                          | %                               | t/m³        | %                          | %             | %                                    | %                |                                          |                   |                    |
| Sample<br>Identification            | Soil Description                                                                                                         | Field Moisture Content          | Dry Density | Liquid Limit               | Plastic Limit | Plasticity Index                     | Linear Shrinkage | % Passing 75µm sieve                     | Emerson Class No* | Emerson Class No** |
| 13221050<br>SKM-BH01<br>1.5 - 1.91m | CLAY, high plasticity, brown with grey and orange-brown, with fine to coarse sand, trace of fine to medium gravel.       | 23.3                            | 1.64        | 82                         | 24            | 58                                   | 17.5             | 68                                       | 2                 | 5                  |
| 13221051<br>SKM-BH01<br>3.5 - 3.94m | CLAY, high plasticity, orange-brown some grey, with fine to coarse sand, trace of fine to coarse gravel.                 | 27.2                            | -           | 74                         | 24            | 50                                   | 16.5             | 75                                       | 2                 | 5                  |
| 13221052<br>SKM-BH02<br>1.2m        | clayey SAND, fine to coarse, pale yellow-brown, brown and grey, fines of low plasticity, trace of fine to coarse gravel. | 11.3                            | -           | -                          | -             | -                                    | -                | 34                                       | 2                 | 5                  |
| 13221053<br>SKM-BH02<br>5.5 - 5.95m | CLAY, high plasticity, pale brown with grey and brown, with fine to coarse sand, trace of fine gravel.                   | 29.1                            | 1.50        | 78                         | 24            | 54                                   | 17.0             | 70                                       | 2                 | 5                  |
| 13221054<br>SKM-BH03<br>2.0 - 2.3m  | clayey SAND, fine to coarse, grey/brown, fines of low plasticity, with fine to medium gravel.                            | 10.7                            | -           | 28                         | 15            | 13                                   | 9.0              | 41                                       | -                 | -                  |
| 13221055<br>SKM-BH04<br>1.5m        | clayey SAND, fine to coarse, brown with some white, low to medium plasticity, trace of fine to medium gravel.            | 10.0                            | -           | -                          | -             | -                                    | -                | 40                                       | -                 | -                  |
| 13221056<br>SKM-BH05<br>2.0 - 2.5m  | clayey SAND, fine to coarse, brown, fines of low plasticity, with fine to medium gravel.                                 | 7.1                             | -           | -                          | -             | -                                    | -                | 26                                       | 3                 | 5                  |
| 13221057<br>SKM-BH05<br>4.3 - 4.74m | sandy CLAY / clayey SAND, fine to coarse, grey, fines of medium plasticity, trace of fine to medium gravel.              | 16.8                            | 1.83        | 39                         | 14            | 25                                   | 11.0             | 50                                       | 2                 | 5                  |
| 4S 1289.3.1.2,3                     | Method of drying: Air dried AS 1289.3.8.1 Wate<br>Dry/Wet sieve: Dry Temp                                                | r used:<br>perature:<br>sampled |             | Distille<br>19.3<br>12-13/ | °C            |                                      | **               | Pond v<br>19.8                           | vater<br>°C       |                    |



| /IL GEOTECH<br>8 Rose Avenue, |                      |                       |           |           |              |            |          |        |                | Re                   | b No<br>port No<br>ite of Iss |            | е           | 1322<br>1322<br>08/01                                         | 1/R053         |
|-------------------------------|----------------------|-----------------------|-----------|-----------|--------------|------------|----------|--------|----------------|----------------------|-------------------------------|------------|-------------|---------------------------------------------------------------|----------------|
|                               | SINCLAIR KN          |                       | RZ (MI    | ELBOU     | RNE)         |            |          |        |                | Te                   | sted by                       | ,          |             | Schedule 2                                                    | 2 (a)          |
| Project                       | VW07289.02           | ISABELLA              | WEIF      | र         |              |            |          |        |                | Da                   | te teste                      | ed         |             | 07/01                                                         | 1/14           |
| Location                      | ACT                  |                       |           |           |              |            |          |        |                | Ch                   | ecked k                       | by         |             | Schedule 2                                                    | .2 (a)(i       |
| Sample Iden                   | tification           | SKM-BH0               | )1 1.8    | 5 - 1.91r | n            |            |          |        |                | Sa                   | mple N                        | 0          |             | 1322                                                          | 1050           |
| Sample Desc                   | cription             |                       |           |           |              |            |          |        |                |                      |                               |            |             |                                                               |                |
|                               | lasticity, brow      |                       | and c     |           |              |            | o coars  | se sa  | and, f         | race of t            | fine to n                     | ne         | dium gi     | avel.                                                         |                |
| Assumed soi                   | il particle dens     | sity                  |           | 2         | .65 g/cr     | n³         |          |        |                |                      |                               |            |             |                                                               |                |
|                               | 1 and 3.6.3 -        |                       |           |           | - Standa     | rd metho   | od of fi | ne a   | analy          | sis using            | ı a Hydr                      | ron        | neter       |                                                               |                |
| Method of dis                 | spersion             | M                     | echan     | ical      | Los          | s in pret  | reatme   | ent    |                | 0%                   | ,<br>D                        |            |             |                                                               |                |
| Hydrometer t                  | type                 | g/                    |           |           | Var          | iation to  | metho    | d      |                | -                    |                               |            |             |                                                               |                |
| Particle                      | Percent              | l                     | 40        |           |              |            |          |        |                |                      |                               |            |             |                                                               |                |
| Size                          | Passing              |                       |           | SIEVE (m  | (11)         |            | 0.075    | 2      | 0.300<br>0.425 | 0.600<br>1.18        | 2.36                          | 2 ~        | 9.5<br>13.2 | 6.5<br>7.5                                                    | 3.0            |
| ( <i>mm</i> )                 | 100                  | 100                   | <b> </b>  | I         |              | ,          | 0        | S<br>T | 00             |                      | 01 4                          | r v<br>T T |             | 、 (vi ín)<br><del>著                                    </del> | ***            |
| 100.0<br>75.0                 | 100                  |                       |           |           |              |            |          |        |                |                      |                               | ۲ľ         |             |                                                               |                |
| 53.0                          | 100                  | 90                    |           |           |              |            |          |        |                |                      | $\Lambda$                     |            |             |                                                               |                |
| 37.5                          | 100                  | 90                    |           |           |              |            |          |        |                |                      | _                             |            |             |                                                               |                |
| 26.5                          | 100                  |                       |           |           |              |            | _        |        |                |                      |                               |            |             |                                                               |                |
| 19.0                          | 100                  | 80                    |           |           |              |            |          |        |                | * +                  |                               | H          |             |                                                               |                |
| 13.2                          | 100                  |                       |           |           |              |            |          |        | $\mathbf{X}$   |                      |                               |            |             |                                                               |                |
| 9.5                           | 99                   | 70                    |           |           |              |            |          | K      | ++             |                      |                               | H          |             | ┇┼┼┼                                                          |                |
| 6.7                           | 98                   |                       |           |           |              |            | $\star$  |        | $\pm \pm$      |                      |                               | Ħ          |             |                                                               |                |
| 4.75                          | 97                   | ing                   |           |           |              |            |          |        |                |                      |                               | Ħ          |             |                                                               |                |
| 2.36                          | 94                   | Percent Passing<br>05 |           |           | XXX          | *          |          |        | ++-            |                      |                               | Ħ          |             |                                                               |                |
| 1.18                          | 87                   | it P                  |           | ××        |              |            |          |        | ++-            |                      |                               | H          |             |                                                               |                |
| 0.600                         | 80                   | lej 50                | ×         |           |              |            | _        | _      |                |                      | _                             | H          |             |                                                               |                |
| 0.425                         | 77                   | Per                   |           |           |              |            |          |        |                |                      |                               |            |             |                                                               |                |
| 0.300<br>0.150                | 75<br>71             | 40                    |           |           |              |            |          |        | ++             |                      |                               |            |             |                                                               |                |
| 0.150                         | 68                   | 40                    |           |           |              |            |          |        |                |                      |                               |            |             |                                                               |                |
| 0.075                         | 66                   |                       |           |           |              |            |          |        |                |                      |                               | H          |             |                                                               |                |
| 0.048                         | 64                   | 30                    |           |           |              |            |          |        | $\pm\pm$       |                      |                               | ╞┼         |             | ╞┼┼                                                           |                |
| 0.034                         | 61                   |                       |           |           |              |            |          |        | ++             |                      |                               | #          |             |                                                               |                |
| 0.024                         | 60                   | 20                    |           |           |              |            |          |        | ++             | 1                    |                               | Ħ          |             |                                                               | ###            |
| 0.015                         | 60                   |                       |           |           |              |            |          |        |                |                      |                               | H          |             |                                                               |                |
| 0.011                         | 59                   | 10                    |           |           |              |            |          |        |                |                      |                               |            |             |                                                               |                |
| 0.0079                        | 58                   | 10                    |           |           |              |            |          |        |                |                      |                               |            |             |                                                               |                |
| 0.0056                        | 57                   |                       |           |           |              |            |          |        |                |                      |                               | H          |             |                                                               |                |
| 0.0040                        | 55                   | 0                     |           |           |              |            |          | Ŧ      |                |                      |                               | Ŧ          |             |                                                               |                |
| 0.0028                        | 54<br>52             |                       | CLAY      | fine      | medium       | coarse     | fine     | n      | nedium         | coarse               | fine                          |            | medium      | coars                                                         | COBBLES        |
| 0.0020<br>0.0012              | 53<br>51             |                       | <u> </u>  |           | SILT         |            |          | 3      | SAND           |                      |                               | G          | GRAVEL      |                                                               | COB            |
| -                             |                      | I                     | 0.        | 002       |              | 0.0        |          | artici | le Size        | (mm)                 | 2.0                           |            |             |                                                               | 60.0           |
| Gravel                        |                      | Sa                    | nd        |           |              | Silt       |          |        |                |                      |                               |            | bles        |                                                               | 0.0%           |
| coarse                        | 0.0%                 |                       | arse      |           | .7%          | coa        |          |        |                | 6.7%                 |                               |            | vel         |                                                               | 7.5%           |
| medium<br>fine                | 2.5%<br>5.0%         | me<br>fin             | edium     |           | .5%<br>.9%   | me<br>fine | dium     |        |                | 2.4%<br>4.6%         |                               | an<br>Silt | đ           |                                                               | 26.1%<br>13.7% |
| Total                         | 5.0 <i>%</i><br>7.5% |                       | e<br>otal |           | 5.9%<br>5.1% | Tot        |          |        |                | 4.0 <i>%</i><br>3.7% |                               | lay        | /           |                                                               | 52.7%          |
|                               |                      |                       |           |           |              |            |          |        |                |                      |                               | ote        |             |                                                               | 00.0%          |

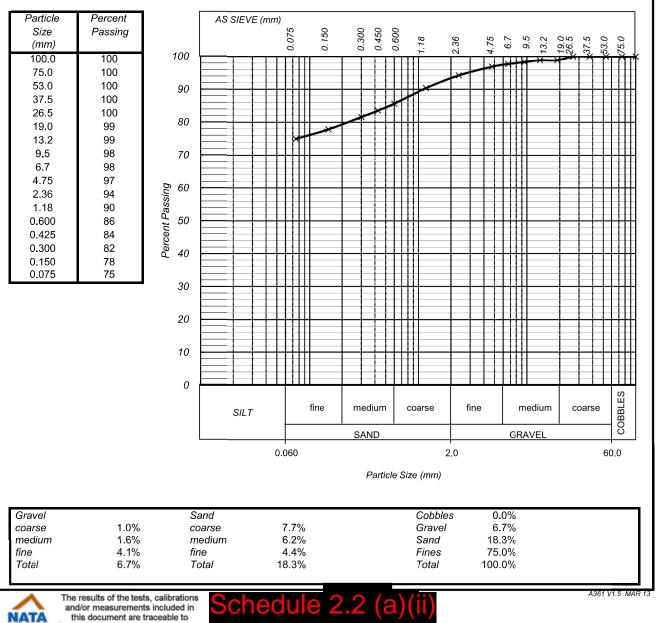
AT/

TECHNICA

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9999

A362 V1.1 MAR 13




AS 1289.3.6.1

|                               | ECHNICAL SERVICES<br>enue, Croydon 3136                             | Job No<br>Report No<br>Date of Issue     | 13221<br>13221/R054<br>08/01/14                    |
|-------------------------------|---------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|
| Client<br>Project<br>Location | SINCLAIR KNIGHT MERZ (MELBOURNE)<br>VW07289.02 ISABELLA WEIR<br>ACT | Tested by<br>Date tested<br>Checked by   | Schedule 2.2 (a)<br>19/12/13<br>Schedule 2.2 (a)(i |
| Sample Id<br>Sampling         | entification SKM-BH01 3.5 - 3.94m<br>method By Client               | Sample No<br>Sampled by<br>Sampling date | 13221051<br>Client<br>12/12/13                     |
| Sample De                     | escription                                                          |                                          |                                                    |

CLAY, high plasticity, orange-brown some grey, with fine to coarse sand, trace of fine to coarse gravel.

#### Particle Size Distribution

Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909





| Rose Avenu                | HNICAL SER        | 6                                           |        |          |             |            |           |         |              |        |               | Dai           | bort No<br>te of Issi | ue                 |              | 08/         | 01/1                    | ₹05<br>4 |
|---------------------------|-------------------|---------------------------------------------|--------|----------|-------------|------------|-----------|---------|--------------|--------|---------------|---------------|-----------------------|--------------------|--------------|-------------|-------------------------|----------|
| Client                    | SINCLAIR K        |                                             |        | •        |             | RNE)       |           |         |              |        |               |               | sted by               |                    |              | Schedul     |                         |          |
| Project                   |                   | W07289.02 ISABELLA WEIR Date tested 07/01/1 |        |          |             |            |           |         |              |        |               |               |                       | 4                  |              |             |                         |          |
| ocation                   | ACT               | CT Checked by                               |        |          |             |            |           |         |              |        |               |               |                       |                    |              |             |                         |          |
| Sample Ide.<br>Sample Des |                   | SKM-                                        | -BH02  | 2@1      | l.2m        |            |           |         |              |        |               | Sai           | mple No               |                    |              | 132         | 210                     | 52       |
|                           | D, fine to coarse | e, pale y                                   | /ellow | -brow    | ın, browı   | n some d   | ark grey  | , fines | s of         | low    | plas          | sticity, tra  | ace of fin            | e to               | coar         | se g        | rave                    | Ι.       |
| Soil particle             | density (-2.36    | mm sie                                      | ve)    |          | 2           | .65 g/cı   | n³        |         |              |        |               |               |                       |                    |              |             |                         |          |
|                           | 6.1 and 3.6.3 -   | Particle                                    |        |          |             |            |           |         |              |        | alys          |               |                       | met                | er           |             |                         |          |
| Method of a               | •                 |                                             |        | chan     | ical        |            | s in pret |         |              | ι      |               | 0%            |                       |                    |              |             |                         |          |
| Hydrometer                | <sup>-</sup> type |                                             | g/l    |          |             | Var        | iation to | meth    | od           |        |               | -             |                       |                    |              |             |                         |          |
| Particle                  | Percent           | 1                                           |        | 4.5      | SIEVE (m    | <i>m</i> ) |           |         |              |        |               |               |                       |                    |              |             |                         |          |
| Size                      | Passing           |                                             |        |          | 012 1 2 (11 | ,          |           | 0.075   | 50           | 8      | 0.425         | 18            | 5 0                   |                    | 0 0          |             | 0 0                     | 0        |
| ( <i>mm</i> )             |                   | ]                                           | 100    |          |             |            |           | 0.0     | 0.150        | 0.3    | 0.4           | 1.18          | 2.36<br>4.75          | 6.7<br>9.5         | 13.2<br>19.0 | ¢ 26.       | 53.                     | , 75.    |
| 100.0                     | 100               | ]                                           | 100    |          |             |            |           |         |              |        |               |               |                       |                    |              | I/          | $\uparrow\uparrow$      | <u> </u> |
| 75.0                      | 100               |                                             |        |          |             |            |           |         |              |        | -             |               | $\parallel$           |                    |              | /           | $\square$               |          |
| 53.0                      | 100               |                                             | 90     |          |             |            |           |         |              |        | -             |               |                       | #                  | $\mathbf{P}$ |             | +                       |          |
| 37.5                      | 100               |                                             |        |          |             |            |           |         | 1            |        | -             |               |                       |                    | Æ.           |             |                         |          |
| 26.5                      | 100               |                                             |        |          |             |            |           |         |              |        | -             |               |                       | ₽                  | -            |             | ##                      |          |
| 19.0                      | 91                |                                             | 80     |          |             |            |           |         | $\pm$        |        | +             |               | ↗                     | $\uparrow\uparrow$ |              |             | +                       |          |
| 13.2                      | 89                |                                             |        |          |             |            |           |         | -            |        | -             |               | /                     |                    |              |             | $\square$               |          |
| 9.5                       | 84                |                                             | 70     |          |             |            |           |         |              |        | 1             |               | ₫                     |                    |              |             |                         |          |
| 6.7                       | 82                |                                             | , 0    |          |             |            |           |         |              |        |               | $\vdash \vee$ |                       |                    |              |             |                         |          |
| 4.75                      | 80                | βι                                          |        |          |             |            |           |         |              |        |               | $  \Lambda  $ |                       |                    | _            |             | H                       |          |
| 2.36                      | 73                | ssir                                        | 60     |          |             |            |           |         | +            |        | -             |               | ++∓                   | H                  |              |             | +                       |          |
| 1.18                      | 66                | Percent Passing                             |        |          |             |            |           |         |              |        | $\rightarrow$ | K             |                       |                    |              |             |                         |          |
| 0.600                     | 56                | ent                                         | 50     |          |             |            |           |         | -            |        | X             |               |                       |                    |              |             | H                       |          |
| 0.425                     | 51                | erce                                        | 50     |          |             |            |           |         | T            | ¥      | 4             |               |                       | $\Pi$              | -            | $\square$   | H                       |          |
| 0.300                     | 47                | ď                                           |        |          |             |            |           |         | -            | Α      | -             |               |                       |                    |              |             | Ħ                       |          |
| 0.150                     | 39                |                                             | 40     |          |             |            |           |         | $\mathbf{X}$ |        | +-            |               | +++                   | #-#                |              |             | +                       |          |
| 0.075                     | 34                |                                             |        |          |             |            |           |         | -            |        |               |               |                       |                    |              |             | $\square$               |          |
| 0.060                     | 31                |                                             |        |          |             |            | , · · · · | ľ-      | -            |        | -             |               | 111-                  | 11                 | _            |             |                         |          |
| 0.048                     | 29                |                                             | 30     |          |             |            |           |         | +            |        | +             |               |                       |                    |              | $\parallel$ | ##                      | Ħ        |
| 0.035                     | 27                |                                             |        |          |             | XXX        |           |         |              |        | -             |               | <u>  </u>  -          |                    |              |             |                         |          |
| 0.022                     | 26                |                                             | 20     |          |             |            |           |         |              | _      | +             |               | ;;,;                  |                    |              | <b> </b>  - | $\downarrow \downarrow$ |          |
| 0.016                     | 25                |                                             |        | ×        | ××··        |            |           |         |              |        | -             |               | -                     |                    |              |             |                         |          |
| 0.012                     | 23                |                                             |        |          |             |            |           |         | -            |        | -             |               |                       |                    | _            |             |                         |          |
| 0.0082                    | 23                |                                             | 10     |          |             |            |           |         |              |        | +             |               | <u>+</u>   <u> </u>   |                    |              |             | +                       |          |
| 0.0059                    | 21                |                                             |        |          |             |            |           |         |              |        |               |               |                       |                    |              |             |                         |          |
| 0.0042                    | 19                |                                             | 0      | <u> </u> |             |            |           |         | +            |        | +             |               | <u>       -</u>       |                    |              |             | +                       | $\pm$    |
| 0.0030                    | 18                |                                             | U      |          | fine        | medium     | coarse    | fine    | 1            | med    | ium           | coarse        | fine                  | me                 | dium         | coa         | nrse –                  | ES       |
| 0.0021                    | 17                |                                             |        | CLAY     |             |            |           |         |              |        |               |               |                       |                    |              |             |                         | COBBLES  |
| 0.0012                    | 16                |                                             |        |          |             | SILT       |           |         |              | SA     | ND            |               |                       | GRA                | VEL          |             |                         | S        |
|                           | -                 | •                                           |        | 0.       | 002         |            | 0.0       |         | Part         | icle ? | Size          | 2<br>(mm)     | .0                    |                    |              |             | 60                      | 0.0      |
| Gravel                    |                   |                                             | Sar    | nd       |             |            | Silt      |         | . art        |        |               |               | Co                    | bble               | s            |             | 0                       | .0%      |
| coarse                    | 7.5%              |                                             | coa    |          | 15          | 5.2%       |           | arse    |              |        | 5             | .6%           |                       | avel               | -            |             |                         | .5%      |
| medium                    | 11.4%             |                                             |        | dium     | 13          | 8.9%       |           | dium    |              |        | 4             | .6%           | Sa                    | nd                 |              |             | 40                      | .1%      |
| fine                      | 9.6%              |                                             | fine   |          |             | .0%        | fine      |         |              |        |               | .0%           | Sili                  |                    |              |             |                         | .2%      |
| Total                     | 28.5%             |                                             | Tot    | al       | 40          | 0.1%       | Tot       | al      |              |        | 14            | .2%           | Cla                   | av                 |              |             | 17                      | .2%      |

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

ATA

TECHNICAL

Schedule 2.2 (a)(ii)



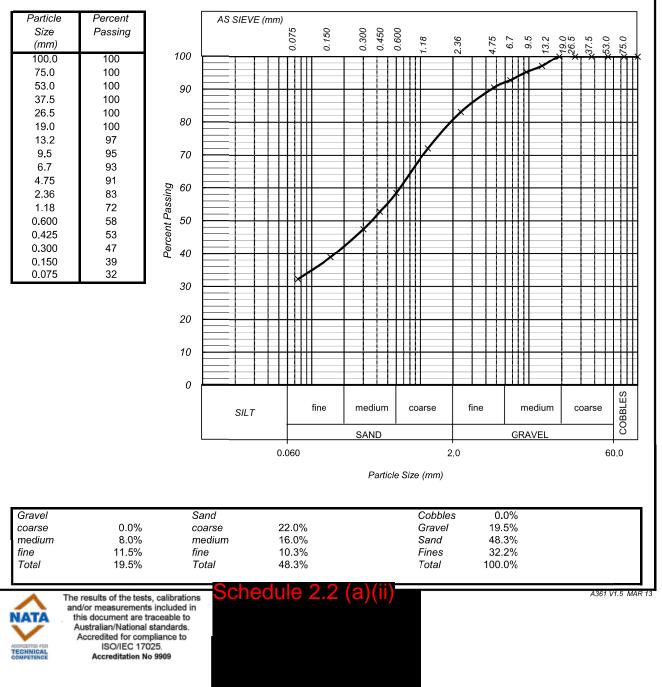
| /IL GEOTECH<br>8 Rose Avenue  |                                     |                 |              |                       |           |              |                       |       |       |        |              |                   | No<br>oort No<br>e of Iss    |            | e                                                | 13           | 8221<br>8221/<br>8/01/ <sup>-</sup> | R056<br>14   |
|-------------------------------|-------------------------------------|-----------------|--------------|-----------------------|-----------|--------------|-----------------------|-------|-------|--------|--------------|-------------------|------------------------------|------------|--------------------------------------------------|--------------|-------------------------------------|--------------|
| Client<br>Project<br>Location | SINCLAIR KI<br>VW07289.02<br>ACT    |                 |              |                       |           | RNE)         |                       |       |       |        |              | Date              | ted by<br>e teste<br>ecked l | d          |                                                  |              | edule :<br>7/01/*                   | 14           |
| Sample Iden                   |                                     | SKM-I           | 3H02         | 5.5                   | 5 - 5.95r | n            |                       |       |       |        |              | San               | nple N                       | 0          |                                                  | 13           | 8221(                               | 053          |
| Sample Desc<br>CLAY, high p   | <i>cription</i><br>blasticity, pale | brown v         | with g       | rey a                 | and brow  | vn, with t   | fine to co            | arse  | sar   | nd, '  | trac         | e of fine         | gravel.                      |            |                                                  |              |                                     |              |
|                               | density (-2.36                      |                 |              |                       |           | .65 g/cr     |                       |       |       |        |              |                   |                              |            |                                                  |              |                                     |              |
| AS 1289.3.6.<br>Method of di  | .1 and 3.6.3 -<br>spersion          | Particle        |              | <i>Distr</i><br>chani |           |              | rd metho<br>s in pret |       |       |        | alys         | is using a<br>0%  | a Hydr                       | on         | neter                                            |              |                                     | _            |
| Hydrometer                    | •                                   |                 | g/l          | Jilaili               | oui       |              | iation to             |       |       |        |              | -                 |                              |            |                                                  |              |                                     |              |
| Particle                      | Percent                             | 1               | Γ            | AS S                  | SIEVE (m  | m)           |                       |       |       |        |              |                   |                              |            |                                                  |              |                                     |              |
| Size<br>(mm)                  | Passing                             |                 |              |                       |           |              |                       | 0.075 | UCT.U | 0.300  | 0.425        | 1.18              | 2.36                         | 6.7        | 9.5<br>13.2                                      | 19.0<br>26.5 | 37.5<br>53.0                        | 75.0         |
| 100.0                         | 100                                 |                 | 100          |                       |           |              |                       |       | -     |        |              |                   |                              | ſ          | <del>(                                    </del> | 11           | $\rightarrow$                       |              |
| 75.0                          | 100                                 |                 |              |                       |           |              |                       |       |       |        | _            |                   | <u> </u>                     |            |                                                  |              |                                     |              |
| 53.0<br>37.5                  | 100<br>100                          |                 | 90           |                       |           |              |                       |       | Ħ     |        | +            |                   |                              |            |                                                  |              |                                     | ##           |
| 37.5<br>26.5                  | 100                                 |                 |              |                       |           |              |                       |       | Ħ     |        | $\downarrow$ |                   |                              |            |                                                  |              |                                     |              |
| 20.5<br>19.0                  | 100                                 |                 | 80           |                       |           |              |                       |       |       |        | $\star$      |                   |                              | _          |                                                  |              |                                     |              |
| 13.0                          | 100                                 |                 |              |                       |           |              |                       |       |       | 4      | -            |                   |                              |            |                                                  |              |                                     | <b>H</b>     |
| 9.5                           | 100                                 |                 | _            |                       |           |              |                       |       | *     |        | -            |                   |                              |            |                                                  |              |                                     |              |
| 9.3<br>6.7                    | 100                                 |                 | 70           |                       |           |              | ×                     | *     | Ħ     | _      | +            |                   |                              |            |                                                  |              | -                                   |              |
| 4.75                          | 99                                  | Ð               |              |                       |           |              | **                    |       |       |        | _            |                   |                              | _          |                                                  |              |                                     |              |
| 2.36                          | 96                                  | Percent Passing | 60           |                       |           | XXX          |                       | +     | H     | _      | +            |                   | ļ                            |            |                                                  |              |                                     |              |
| 1.18                          | 90<br>91                            | as              |              |                       | X         |              |                       |       |       |        | -            |                   |                              |            |                                                  |              |                                     |              |
| 0.600                         | 85                                  | nt F            |              | $\mathbf{x}$          | e~        |              |                       |       |       | _      | +            |                   |                              |            |                                                  |              | _                                   |              |
| 0.000                         | 83<br>82                            | rce             | 50           |                       |           |              |                       | -     |       |        | +            |                   |                              |            |                                                  |              |                                     |              |
| 0.425                         | 82<br>79                            | Pe              |              |                       |           |              |                       |       |       |        | -            |                   |                              |            |                                                  |              |                                     |              |
| 0.300                         | 79<br>74                            |                 | 40           |                       |           |              |                       |       | +     |        | $\pm$        |                   |                              |            |                                                  |              |                                     |              |
|                               | 74<br>70                            |                 | 40           |                       |           |              |                       |       |       |        |              |                   |                              |            |                                                  |              |                                     |              |
| 0.075                         |                                     |                 |              |                       |           |              |                       |       |       | _      | -            |                   |                              | -          |                                                  |              |                                     | H            |
| 0.060                         | 69<br>69                            |                 | 30           |                       |           |              |                       |       | Η     | _      | -            |                   |                              | -          |                                                  |              |                                     |              |
| 0.048                         | 68                                  |                 |              |                       |           |              |                       |       |       |        |              |                   |                              | -          |                                                  |              |                                     |              |
| 0.034                         | 66<br>65                            |                 | 20           |                       |           |              |                       | -     |       | _      | -            |                   |                              | -          |                                                  |              |                                     | H            |
| 0.021                         | 65<br>62                            |                 | 20           |                       |           |              |                       |       | П     |        | -            |                   |                              | H          |                                                  |              |                                     | Ħ            |
| 0.015                         | 63                                  |                 |              |                       |           |              |                       |       | H     |        | -            |                   |                              | -          |                                                  |              |                                     |              |
| 0.011                         | 61<br>60                            |                 | 10           |                       |           |              |                       |       | H     |        |              |                   |                              |            |                                                  |              |                                     | ##           |
| 0.0080                        | 60<br>50                            |                 |              |                       |           |              |                       |       | Ħ     |        | -            |                   |                              |            |                                                  |              |                                     | $\square$    |
| 0.0057                        | 59<br>57                            |                 | _            |                       |           |              |                       |       | H     |        | -            |                   | ļ                            |            |                                                  |              |                                     |              |
| 0.0040<br>0.0029              | 57<br>56                            |                 | 0            | ~                     |           |              |                       |       | -     |        |              |                   | f                            | ۳          |                                                  |              |                                     |              |
| 0.0029                        | 56<br>55                            |                 |              | CLAY                  | fine      | medium       | coarse                | fine  |       | mec    | num          | coarse            | fine                         |            | medium                                           | °            | oarse                               | COBBLES      |
| 0.0020                        | 53                                  |                 |              | 0                     |           | SILT         |                       |       |       | SA     | ND           |                   |                              | G          | RAVEL                                            |              |                                     | COF          |
|                               |                                     | •               |              | 0.0                   | 002       |              | 0.00                  |       | Part  | icle - | Size         | ( <i>mm</i> ) 2.0 | 0                            |            |                                                  |              | 6                                   | 0.0          |
| Gravel                        |                                     |                 | San          | d                     |           |              | Silt                  |       |       |        |              |                   |                              |            | bles                                             |              |                                     | 0.0%         |
| coarse                        | 0.0%                                |                 | coai         |                       |           | .4%          | coa                   |       |       |        |              | .4%               |                              |            | /el                                              |              |                                     | 1.9%         |
| medium                        | 0.2%                                |                 | mea<br>fino  | lium                  |           | 8.8%         |                       | dium  |       |        |              | .6%               |                              | an<br>#    | d                                                |              |                                     | 5.2%         |
| fine<br>Total                 | 4.7%<br>4.9%                        |                 | fine<br>Tota | a/                    |           | 7.0%<br>5.2% | fine<br>Tot           |       |       |        |              | .2%<br>.2%        |                              | ilt<br>lay | ,                                                |              |                                     | 1.2%<br>1.7% |
| = / U(U)                      | 7.070                               |                 | 1010         | ••                    | 20        |              | 100                   | ~'    |       |        | 14           |                   |                              | ota        |                                                  |              |                                     | 0.0%         |

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 11025. Accreditation No 9909

NATA

TECHNICAL

Schedule 2.2 a,




AS 1289.3.6.1

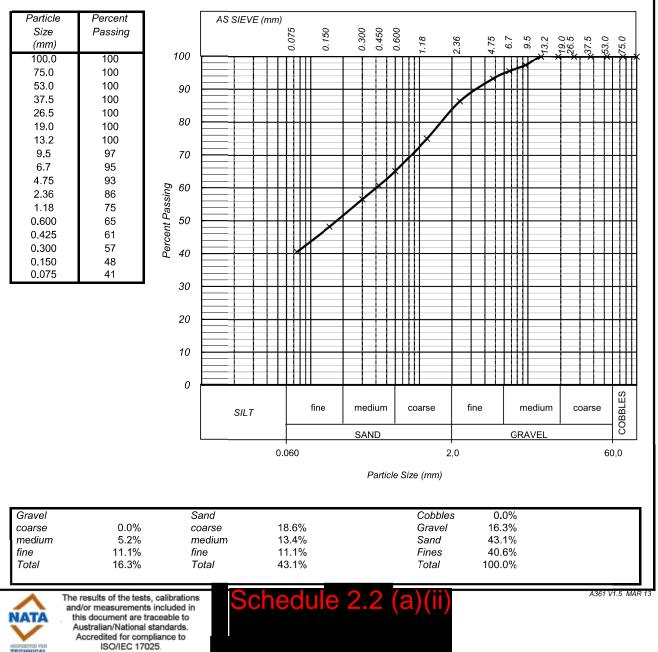
|                               | ECHNICAL SERVICES<br>enue, Croydon 3136                             | Job No<br>Report No<br>Date of Issue     | 13221<br>13221/R062<br><u>17/01/</u> 14   |
|-------------------------------|---------------------------------------------------------------------|------------------------------------------|-------------------------------------------|
| Client<br>Project<br>Location | SINCLAIR KNIGHT MERZ (MELBOURNE)<br>VW07289.02 ISABELLA WEIR<br>ACT | Tested by<br>Date tested<br>Checked by   | Schedule 2.2<br>15/01/14<br>Schedulo 2.21 |
| Sample Ide<br>Sampling i      | entification BH03 1.5m<br>nethod By Client                          | Sample No<br>Sampled by<br>Sampling date | 13221058<br>Client<br>12/12/13            |
| Sample De                     | escription                                                          |                                          |                                           |

clayey SAND, fine to coarse grey-brown, fines of low plasticity, with fine to medium gravel

#### Particle Size Distribution






AS 1289.3.6.1

| CIVIL GEOTECHNICAL SERVICES<br>6 - 8 Rose Avenue, Croydon 3136                    | Report No 1                              | 3221<br> 3221/R057<br>)8/01/14      |
|-----------------------------------------------------------------------------------|------------------------------------------|-------------------------------------|
| ClientSINCLAIR KNIGHT MERZ (MELBOURNE)ProjectVW07289.02 ISABELLA WEIRLocationACT  | Tested by<br>Date tested 1<br>Checked by | hedule<br>  8/12/13<br>chedule 2.21 |
| Sample IdentificationSKM-BH032.0 - 2.3mSampling methodBy ClientSample Description | Sampled by                               | 13221054<br>Client<br>2013          |

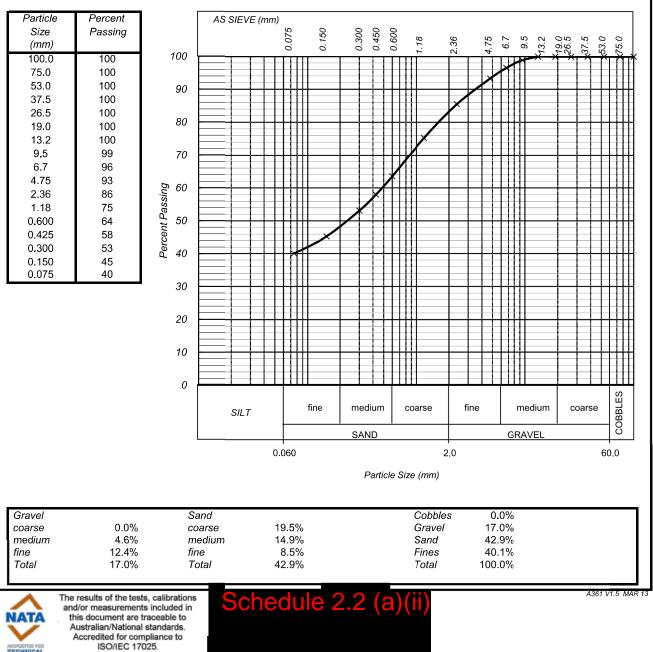
clayey SAND, fine to coarse, brown/grey, fines of low plasticity, with fine to medium gravel.

#### Particle Size Distribution

Accreditation No 9909






AS 1289.3.6.1

| CIVIL GEOTECHNICAL SERVICES<br>6 - 8 Rose Avenue, Croydon 3136                           | Job No<br>Report No<br>Date of Issue     | 13221<br>13221/R058<br>08/01/14             |
|------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|
| ClientSINCLAIR KNIGHT MERZ (MELBOURNE)ProjectVW07289.02 ISABELLA WEIRLocationACT         | Tested by<br>Date tested<br>Checked by   | Schedule 2<br>18/12/13<br>Schedule 2.2 (a)1 |
| Sample Identification SKM-BH04 @ 1.5m<br>Sampling method By Client<br>Sample Description | Sample No<br>Sampled by<br>Sampling date | 13221055<br>Client<br>2013                  |

clayey SAND, fine to coarse, brown with some white, fines of low to medium plasticity, trace of fine to medium gravel.

#### Particle Size Distribution

Accreditation No 9909





| /IL GEOTECH      |                 |                 |                |          |          |            |             |               |          |                         | -        | ort No      |                        |                     |                        | /R059             |
|------------------|-----------------|-----------------|----------------|----------|----------|------------|-------------|---------------|----------|-------------------------|----------|-------------|------------------------|---------------------|------------------------|-------------------|
| 8 Rose Avenue,   |                 |                 | 4507           | /        |          |            |             |               |          |                         |          | e of Is:    |                        | <del>)</del>        | 08/01/<br>Schedule 2.2 | '14<br>•          |
|                  | SINCLAIR KN     |                 |                |          |          | KNE)       |             |               |          |                         |          | ted by      |                        |                     | 07/04                  |                   |
| ,                | VW07289.02      | ISABEL          | LA W           | /EIR     |          |            |             |               |          |                         |          | e teste     |                        |                     | 07/01/<br>Schedule 2.2 | /14<br><b>0</b> / |
| Location         | ACT             |                 |                |          |          |            |             |               |          |                         | Che      | ecked l     | by                     |                     |                        |                   |
| Sample Iden      |                 | SKM-E           | 3H05           | 2.0      | - 2.5m   |            |             |               |          |                         | San      | nple N      | 0                      |                     | 13221                  | 056               |
| Sample Desc      |                 |                 |                |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| clayey SAND      | , fine to coars | e, browr        | n, fine        | es of    | low pla  | sticity, w | rith fine t | o med         | ium      | grave                   | l.       |             |                        |                     |                        |                   |
|                  |                 |                 |                |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
|                  |                 |                 |                |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| Assumed soi      | l particle dens | sity            |                |          | 2        | .65 g/cr   | n³          |               |          |                         |          |             |                        |                     |                        |                   |
| AS 1289.3.6.     | 1 and 3.6.3 - I | Particle        | Size I         | Distri   | ibution  | - Standa   | rd metho    | od of fi      | ine a    | analys                  | is using | a Hydr      | on                     | neter               |                        |                   |
| Method of dis    |                 |                 | Mec            |          |          |            | s in pret   |               |          |                         | 0%       |             |                        |                     |                        |                   |
| Hydrometer t     | •               |                 | g/l            |          |          |            | iation to   |               |          |                         | -        |             |                        |                     |                        |                   |
|                  |                 |                 |                |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| Particle         | Percent         |                 |                | AS S     | SIEVE (m | m)         |             | s c           | 5        | 000                     | > ~      |             |                        |                     |                        |                   |
| Size<br>(mm)     | Passing         |                 |                |          |          |            |             | 0.075         | <u>.</u> | 0.300<br>0.425<br>0.600 | 1.18     | 2.36        | 5.7                    | 9.5<br>13.2<br>19.0 | 26.5<br>37.5           | 75.0              |
| 100.0            | 100             | 1               | 100 L          |          |          |            |             |               |          |                         |          |             |                        |                     | <u>***</u>             | $\frac{1}{1}$     |
| 75.0             | 100             |                 | F              |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| 53.0             | 100             |                 | <sub>o</sub> F |          |          |            |             |               |          |                         |          |             |                        | X                   |                        |                   |
| 37.5             | 100             |                 | 90             |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| 26.5             | 100             |                 | F              |          |          |            |             |               |          |                         |          |             | И                      | `                   |                        |                   |
| 20.5<br>19.0     | 100             |                 | 80             |          |          |            |             |               |          |                         |          | _/          | ÈШ                     |                     |                        |                   |
| 13.2             | 95              |                 | -              |          |          |            |             |               |          |                         |          | $\parallel$ |                        |                     |                        | #####             |
| 9.5              | 95<br>92        |                 |                |          |          |            |             |               |          |                         |          | X           |                        |                     |                        |                   |
|                  |                 |                 | 70             |          |          |            |             |               |          |                         |          | 11          | Η                      |                     |                        |                   |
| 6.7              | 87              | -               |                |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| 4.75             | 83              | sing            | 60             |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| 2.36             | 72              | ase             | Ĕ              |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| 1.18             | 61              | Percent Passing | F              |          |          |            |             |               |          |                         | /        |             | $\left  \cdot \right $ |                     |                        |                   |
| 0.600            | 50              | .cer            | 50             |          |          |            |             |               |          |                         | K        |             | H                      |                     | $\square$              | $\mathbf{H}$      |
| 0.425            | 44              | Per             | -              |          |          |            |             |               |          | +                       |          |             |                        |                     |                        |                   |
| 0.300            | 40              |                 | , F            |          |          |            |             |               |          | A                       |          |             |                        |                     |                        |                   |
| 0.150            | 32              |                 | 40             |          |          |            |             |               |          | X I                     |          |             |                        |                     |                        |                   |
| 0.075            | 26              |                 | F              |          |          |            |             |               | X        |                         |          |             |                        |                     |                        |                   |
| 0.061            | 24              |                 | 30 F           |          |          |            |             | $\rightarrow$ | *        | ++                      |          |             |                        |                     |                        |                   |
| 0.049            | 22              |                 | ļ              |          |          |            |             | $\star$       |          |                         |          |             |                        | _                   |                        |                   |
| 0.035            | 21              |                 | Ļ              |          |          |            |             | <             |          |                         |          |             |                        |                     |                        |                   |
| 0.025            | 19              |                 | 20             |          |          | ×          | ××          |               |          |                         |          |             | H                      |                     |                        |                   |
| 0.016            | 18              |                 |                |          | XX       | **         |             |               | Ħ        |                         |          | ļ           | Цļ                     |                     |                        |                   |
| 0.012            | 17              |                 | 10             | $\times$ |          |            |             |               |          |                         |          |             |                        | _                   |                        |                   |
| 0.0084           | 16              |                 | È              |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| 0.0060           | 15              |                 |                |          |          |            |             |               |          |                         |          |             |                        |                     |                        |                   |
| 0.0043           | 13              |                 | 0 -            |          |          |            |             | 1             | ╘┼       |                         |          |             | Ч                      |                     | +                      |                   |
| 0.0031           | 13              |                 |                | CLAY     | fine     | medium     | coarse      | fine          | n        | nedium                  | coarse   | fine        |                        | medium              | coarse                 | BLE               |
| 0.0022           | 12<br>10        |                 |                | ٥        |          | SILT       |             |               | 3        | SAND                    |          |             | G                      | RAVEL               |                        | COBBLES           |
| 0.0013           | 10              |                 | L              | 0.0      | 02       |            | 0.00        | 50            |          |                         | 2.       | I<br>0      |                        |                     |                        | 60.0              |
| Craval           |                 |                 | Serie          |          |          |            |             | P             | Partic   | le Size                 | (mm) 2   |             | <b>1</b>               | blog                |                        | 0.00/             |
| Gravel<br>coarse | 0.0%            |                 | Sano<br>coars  |          | 10       | .8%        | Silt<br>coa |               |          | F                       | 5.1%     |             | iobl<br>Tav            | bles<br>/el         |                        | 0.0%<br>0.6%      |
| medium           | 14.2%           |                 | medi           |          |          | .5%        |             | dium          |          |                         | 8.4%     |             | anc                    |                     |                        | 5.8%              |
| fine             | 16.4%           |                 | fine           |          |          | .5%        | fine        |               |          |                         | 3.7%     |             | ilt                    |                     |                        | 2.2%              |
| Total            | 30.6%           |                 | Total          |          | 45       | 5.8%       | Tot         | al            |          |                         | 2.2%     |             | lay                    |                     | 1                      | 1.4%              |
| 1                |                 |                 |                |          |          |            |             |               |          |                         |          | Т           | ota                    | I                   | 10                     | 0.0%              |

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

ATA

TECHNICAL

Schedule 2.2 (a)(ii)

A362 V1.1 MAR 13



#### PARTICLE SIZE DISTRIBUTION

| VIL GEOTECH<br>8 Rose Avenue, |                                  |                          |                        |           |              |           |                 |              |                | Dat                | oort No<br>e of Iss          | sue       | 9      | 1322 <sup>-</sup><br>1322 <sup>-</sup><br>08/01 | 1/R060         |
|-------------------------------|----------------------------------|--------------------------|------------------------|-----------|--------------|-----------|-----------------|--------------|----------------|--------------------|------------------------------|-----------|--------|-------------------------------------------------|----------------|
| Project                       | SINCLAIR KN<br>VW07289.02<br>ACT |                          |                        |           | RNE)         |           |                 |              |                | Dat                | ted by<br>e teste<br>ecked l | d         |        | 07/01                                           | /14            |
| Sample Ident                  | tification                       | SKM-BH0                  | 5 4.3                  | 3 - 4.74r | n            |           |                 |              |                | San                | nple N                       | о         |        | 1322                                            | 1057           |
| Sample Desc                   |                                  |                          |                        |           |              |           |                 |              |                |                    |                              |           |        |                                                 |                |
|                               | / clayey SAN[                    | ) fine to co             | arse                   | arev fin  | es of me     | dium nla  | asticity        | trac         | e of           | fine to m          | edium                        | ar        | ave    |                                                 |                |
| Sandy OLAT                    |                                  | , inte to co             | arse,                  | grey, ini | 63 OF 116    | alum pi   | sticity         | uac          |                |                    | culum                        | gr        |        |                                                 |                |
|                               |                                  |                          |                        |           |              |           |                 |              |                |                    |                              |           |        |                                                 |                |
|                               |                                  |                          |                        |           | <u> </u>     |           |                 |              |                |                    |                              |           |        |                                                 |                |
| Assumed sol                   | il particle dens                 | sity                     |                        | 2         | .65 g/cı     | $n^3$     |                 |              |                |                    |                              |           |        |                                                 |                |
| AS 1289.3.6.                  | 1 and 3.6.3 - i                  | Particle Siz             | e Disti                | ribution  | - Standa     | rd metho  | od of fil       | ie al        | nalys          | is using           | a Hydr                       | on        | neter  |                                                 |                |
| Method of dis                 | spersion                         | Me                       | echan                  | ical      | Los          | s in pret | reatme          | nt           |                | 0%                 |                              |           |        |                                                 |                |
| Hydrometer t                  | ype                              | g/l                      |                        |           | Var          | iation to | metho           | d            |                | -                  |                              |           |        |                                                 |                |
| Particle                      | Percent                          |                          | 40                     |           |              |           |                 |              |                |                    |                              |           |        |                                                 |                |
| Size                          | Percent<br>Passing               |                          | AS                     | SIEVE (m  | )            |           | 75<br>50        |              | 52<br>52       | 8 00               | 9 5                          | \$        |        | 2 2 2                                           | 00             |
| (mm)                          | ·                                |                          | 1                      |           |              |           | 0.075<br>0.150  | i c          | 0.300<br>0.425 | 1.18               | 2.36<br>4 75                 | 6.7       | 9.5    | 26.<br>37.                                      | 53.<br>75.     |
| 100.0                         | 100                              | 100                      | <b>—</b>               |           |              |           |                 |              |                |                    |                              | ۴Þ        | F#¥    | <u> </u>                                        | $^{***}$       |
| 75.0                          | 100                              |                          |                        |           |              |           |                 | -            |                |                    |                              | Ħ         |        |                                                 |                |
| 53.0                          | 100                              | 90                       |                        |           |              |           |                 | _            | ++-            |                    |                              |           |        | +++                                             |                |
| 37.5                          | 100                              |                          |                        |           |              |           |                 |              |                |                    |                              |           |        |                                                 |                |
| 26.5                          | 100                              |                          |                        |           |              |           |                 | _            |                |                    | 1                            | _         |        | #   -                                           |                |
| 19.0                          | 100                              | 80                       |                        |           |              |           |                 | -            |                |                    | 1                            | H         |        |                                                 |                |
| 13.2                          | 100                              |                          |                        |           |              |           |                 |              |                | <b>K</b>           |                              |           |        |                                                 |                |
| 9.5                           | 100                              | 70                       |                        |           |              |           |                 | _            | -*             |                    | H                            |           |        | ┇┼┼╴                                            |                |
| 6.7                           | 99                               |                          |                        |           |              |           |                 | <u> </u>     |                |                    |                              |           |        |                                                 |                |
| 4.75                          | 98                               | bu                       |                        |           |              |           |                 | $\downarrow$ |                |                    |                              |           |        |                                                 |                |
| 2.36                          | 95                               | issi<br>60               |                        |           |              |           |                 | X            |                |                    | 1                            |           |        | ╏┼╌┼╴                                           |                |
| 1.18                          | 87                               | Percent Passing<br>05 09 |                        |           |              |           | $\perp \lambda$ |              |                |                    | <b>_</b>                     |           |        |                                                 |                |
| 0.600                         | 76                               | TU95 50                  |                        |           |              |           | $\mathbf{X}$    | -            |                |                    |                              |           |        |                                                 |                |
| 0.425                         | 70                               | erc                      |                        |           |              | /         | <u> </u>        |              |                |                    |                              | _         |        |                                                 |                |
| 0.300                         | 65                               |                          |                        |           |              |           |                 | +            |                |                    |                              |           |        |                                                 |                |
| 0.150                         | 57                               | 40                       |                        |           |              | × ×       |                 | -            |                |                    |                              |           |        |                                                 |                |
| 0.075                         | 50                               |                          |                        |           |              |           |                 |              |                |                    |                              |           |        |                                                 |                |
| 0.057                         | 47                               | 30                       |                        |           |              |           |                 | -            |                |                    |                              |           |        |                                                 |                |
| 0.047                         | 44                               | 50                       |                        | ×         |              |           |                 | _            |                |                    |                              | H         |        |                                                 |                |
| 0.034                         | 40                               |                          | ×                      | <u> </u>  |              |           | 1               | -            |                |                    |                              |           |        |                                                 |                |
| 0.021                         | 39                               | 20                       |                        |           |              |           |                 | -            | <u>    -</u>   |                    |                              | H         |        |                                                 | ###=1          |
| 0.015                         | 36                               |                          |                        |           |              |           |                 |              |                |                    |                              | Ħ         |        |                                                 |                |
| 0.011                         | 34                               | 10                       |                        |           |              |           |                 | +            |                |                    |                              | H         |        |                                                 |                |
| 0.0081                        | 32                               |                          |                        |           |              |           | 1               | +            |                |                    |                              | H         |        |                                                 |                |
| 0.0058                        | 30                               |                          |                        |           |              |           |                 |              |                |                    |                              | 日         |        |                                                 |                |
| 0.0041                        | 28                               | 0                        | $\left  \right\rangle$ |           |              |           |                 | +            |                |                    |                              | Ψ         |        |                                                 |                |
| 0.0029                        | 26<br>25                         |                          | CLAY                   | fine      | medium       | coarse    | fine            | me           | ədium          | coarse             | fine                         |           | medium | coarse                                          | COBBLES        |
| 0.0021<br>0.0012              | 25<br>23                         |                          |                        |           | SILT         |           |                 | S.           | AND            |                    |                              | G         | RAVEL  |                                                 | COE            |
| 0.0012                        | 20                               |                          | 0.0                    | )<br>202  |              | 0.00      | 50              |              |                | 2.                 | ۱<br>۵                       |           |        |                                                 | 60.0           |
|                               |                                  |                          |                        |           |              | 0.00      |                 | article      | ə Size         | (mm) <sup>2.</sup> |                              |           |        |                                                 |                |
| Gravel                        |                                  | Sa                       |                        | . –       |              | Silt      |                 |              |                |                    |                              |           | bles   |                                                 | 0.0%           |
| coarse                        | 0.0%                             |                          | arse                   |           | .2%          | coa       |                 |              |                | ).2%               |                              | ira       |        |                                                 | 6.9%           |
| medium<br>fine                | 1.2%<br>5.7%                     | rne<br>fin               | edium<br>e             |           | 5.6%<br>2.4% | fine      | dium            |              |                | 8.3%<br>5.6%       |                              | an<br>ilt | u      |                                                 | 45.2%<br>23.1% |
| Total                         | 6.9%                             | To                       |                        |           | 5.2%         | Tot       |                 |              |                | 8.1%               |                              | lay       | ,      | :                                               | 24.8%          |
|                               |                                  |                          |                        |           |              |           |                 |              |                |                    |                              | ota       |        | 1                                               | 00.0%          |

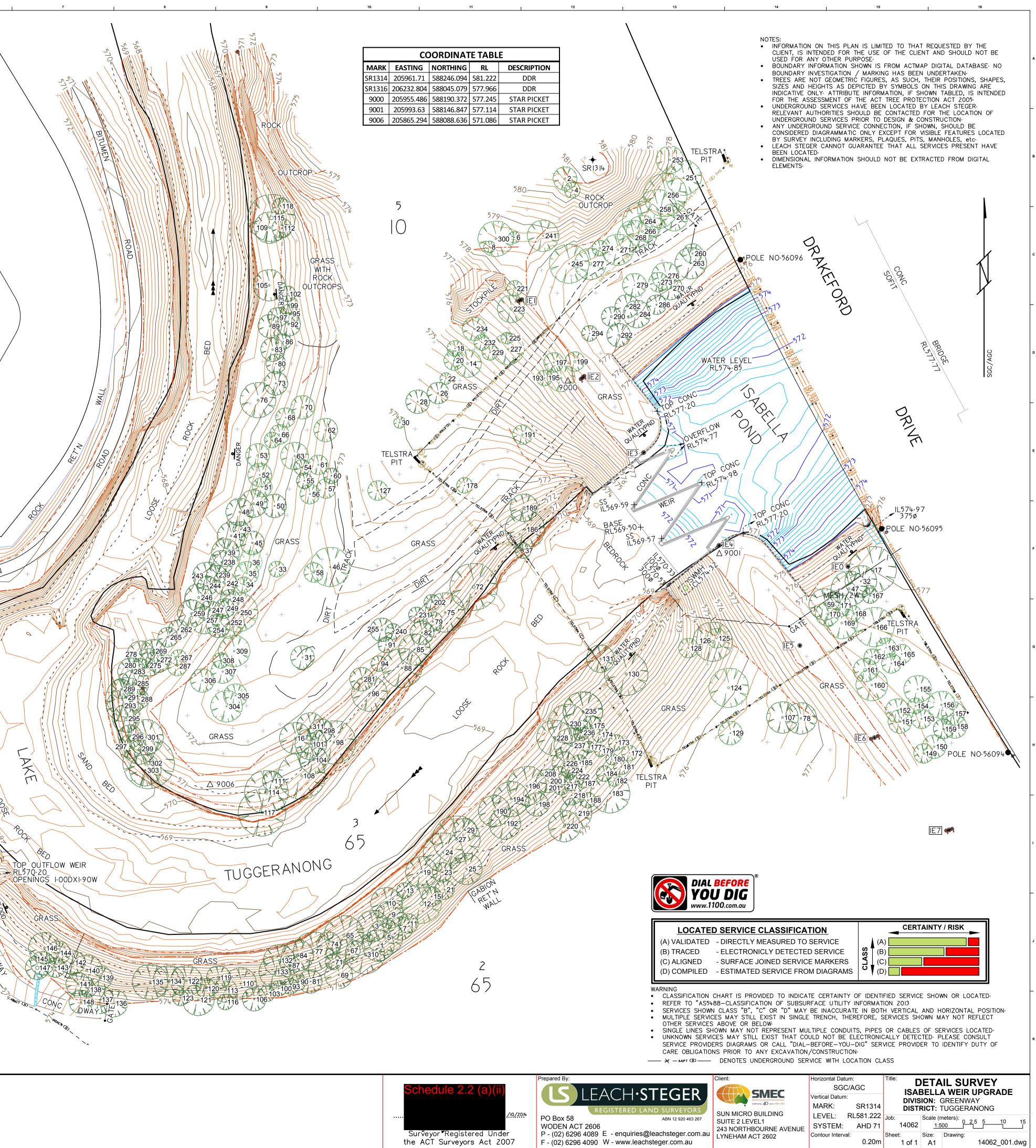
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

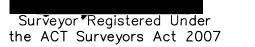
AT/

TECHNICA

Schedule 2.2 (a)(ii)

A362 V1.1 MAR 13


#### APPENDIX 3.01: ISABELLA WEIR SITE SURVEY, LEACH STEGER 2015


|               | Trunk Dia.() | Canony Dia  | () Type Height                   | No.Trunks   |                   |                      | TREE L            |                                                  | No.Trunks   | s Tree No. | Trunk Dia.() | Canony Dia ()     | Туре                   | Height       | No.Trunks     |                                 |
|---------------|--------------|-------------|----------------------------------|-------------|-------------------|----------------------|-------------------|--------------------------------------------------|-------------|------------|--------------|-------------------|------------------------|--------------|---------------|---------------------------------|
| Tree No.<br>1 | 0.30         | 8.0         | CASUARINA 15.0                   | 1           | 105               | 0.50                 | 8.0               | CASUARINA 16.6                                   | 1           | 209        | 0.75         | 8.0               | CASUARINA              |              | 3             |                                 |
| 2             | 0.40         | 6.0         | EUCALYPT 10.6                    | 2           | 106               | 0.30                 | 6.0               | CASUARINA 9.7                                    | 1           | 210        | 0.35         | 7.0               | EUCALYPT               |              | 1             |                                 |
| 3             | 0.35         | 8.0         | CASUARINA 14.0                   | 1           | 107               | 0.45                 | 8.0               | CASUARINA 9.5                                    | 2           | 211        | 0.35         | 7.0               | CASUARINA              |              | 1             | $\backslash$                    |
| 4<br>5        | 0.30         | 4.0<br>9.0  | EUCALYPT 7.8<br>CASUARINA 13.0   | 2           | 108<br>109        | 0.48                 | 12.0<br>8.0       | CASUARINA 17.6<br>CASUARINA 16.6                 | 1           | 212<br>213 | 0.35         | 6.0               | CASUARINA<br>CASUARINA |              | 1<br>1        | $\backslash$                    |
| 6             | 0.20         | 3.0         | EUCALYPT 10.0                    | 1           | 110               | 0.35                 | 8.0               | CASUARINA 15.0                                   | 1           | 214        | 1.00         | 10.0              | CASUARINA              |              | 4             | $\backslash$                    |
| 7             | 0.25         | 6.0         | CASUARINA 12.0                   | 1           | 111               | 0.33                 | 5.0               | CASUARINA 10.0                                   | 2           | 215        | 0.30         | 6.0               | CASUARINA              |              | 1             | $\backslash$                    |
| 8<br>9        | 0.20         | 3.0         | EUCALYPT 10.8                    | 1           | 112               | 0.30                 | 5.0               | CASUARINA 13.2                                   | 1           | 216        | 0.35         | 7.5               | CASUARINA              |              | 1             | $\backslash$                    |
| 9<br>10       | 0.30         | 7.0         | CASUARINA 12.8<br>CASUARINA 15.5 | 1           | 113<br>114        | 0.30<br>0.95         | 6.0<br>11.0       | CASUARINA 16.5<br>CASUARINA 16.2                 | 1 4         | 217<br>218 | 0.20         | 4.0               | CONIFER<br>CONIFER     | 10.0<br>11.5 | <u>1</u><br>1 | $\mathbf{O}$                    |
| 11            | 0.25         | 5.0         | CASUARINA 15.0                   | 1           | 115               | 0.95                 | 12.0              | CASUARINA 14.8                                   | 3           | 219        | 0.25         | 8.0               | CONIFER                | 11.5         | 1             | CANTHER 7                       |
| 12            | 0.90         | 10.0        | EUCALYPT 16.5                    | 3           | 116               | 0.20                 | 4.0               | CASUARINA 12.5                                   | 1           | 220        | 0.60         | 8.0               | CONIFER                | 11.0         | 4             |                                 |
| 13<br>14      | 0.20         | 4.0         | CASUARINA 11.0                   | 1           | 117               | 0.45                 | 12.0              | CASUARINA 16.5                                   | 1           | 221        | 0.50         | 4.0               | EUCALYPT               | 8.3          | 4             |                                 |
| 14            | 0.45         | 7.0         | EUCALYPT 10.0<br>CASUARINA 0.0   | -           | 118<br>119        | 0.20                 | 4.0               | CASUARINA 8.0<br>CASUARINA 12.0                  | 1           | 222<br>223 | 0.20         | 4.0               | CONIFER<br>EUCALYPT    | 10.0<br>8.5  | 4             | F. \ -                          |
| 16            | 0.45         | 8.0         | CASUARINA 16.8                   | 1           | 120               | 0.25                 | 5.0               | CASUARINA 15.0                                   | 1           | 224        | 0.20         | 4.0               | CONIFER                | 14.0         | 1             | $1 \approx 7$                   |
| 17            | 0.70         | 12.0        | CASUARINA 10.8                   | 4           | 121               | 0.40                 | 8.0               | CASUARINA 11.0                                   | 1           | 225        | 0.20         | 3.0               | EUCALYPT               |              | 2             |                                 |
| 18<br>19      | 0.20         | 4.0         | EUCALYPT 8.4<br>CASUARINA 18.0   | 1           | 122<br>123        | 0.40                 | 8.0<br>4.0        | CASUARINA 16.5<br>CASUARINA 11.0                 | 1           | 226<br>227 | 0.30         | 6.0<br>8.0        | CONIFER<br>EUCALYPT    | 12.3<br>8.4  | <u>1</u><br>2 |                                 |
| 20            | 0.40         | 5.0         | EUCALYPT 8.7                     | 1           | 123               | 0.55                 | 10.0              | EUCALYPT 10.6                                    | 2           | 228        | 0.60         | 9.0               | CONIFER                | 14.0         | 2             |                                 |
| 21            | 0.30         | 5.0         | CASUARINA 11.0                   | 1           | 125               | 0.25                 | 5.0               | EUCALYPT 7.3                                     | 2           | 229        | 0.30         | 4.0               | EUCALYPT               | 7.9          | 3             |                                 |
| 22            | 0.20         | 3.0         | EUCALYPT 5.8                     | 2           | 126               | 0.65                 | 10.0              | CASUARINA 10.0                                   | 4           | 230        | 0.45         | 10.0              | CONIFER                | 17.0         | 1             |                                 |
| 23<br>24      | 0.20         | 5.0<br>10.0 | CASUARINA 13.0<br>CASUARINA 17.0 | 1           | 127<br>128        | 0.35<br>0.25         | 5.0<br>5.0        | EUCALYPT 4.0<br>EUCALYPT 10.0                    | 3           | 231<br>232 | 0.20         | 4.0               | CASUARINA<br>EUCALYPT  |              | 1<br>1        | $\mathbf{Y}$                    |
| 25            | 0.40         | 8.0         | CASUARINA 13.0                   | 1           | 128               | 0.25                 | 6.0               | EUCALYPT 9.0                                     | 1           | 232        | 0.45         | 10.0              | CONIFER                | 0.0          | -             |                                 |
| 26            | 0.25         | 5.5         | CASUARINA 7.8                    | 1           | 130               | 0.55                 | 11.0              | CASUARINA 14.1                                   | 2           | 234        | 0.28         | 6.0               | EUCALYPT               | 11.7         | 1             | TEACUE                          |
| 27            | 0.45         | 12.0        | CASUARINA 14.5                   | 1           | 131               | 0.33                 | 7.0               | CASUARINA 12.3                                   | 1           | 235        | 0.40         | 10.0              | CONIFER                | 13.3         | 1             |                                 |
| 28<br>29      | 0.25         | 6.0<br>6.0  | CASUARINA 7.4<br>CASUARINA 12.5  | 1           | 132<br>133        | 0.45                 | 8.0<br>8.0        | CASUARINA 15.0<br>CASUARINA 19.0                 | 1           | 236<br>237 | 0.25         | <u>4.0</u><br>9.0 | CONIFER<br>CONIFER     | 13.0<br>14.5 | 1<br>1        |                                 |
| 30            | 0.35         | 3.0         | EUCALYPT 6.9                     | 3           | 133               | 0.60                 | 8.0               | CASUARINA 15.2                                   | 3           | 237        | 0.30         | 6.0               | CASUARINA              |              | 1             |                                 |
| 31            | 0.30         | 6.0         | EUCALYPT 9.2                     | 1           | 135               | 0.40                 | 9.0               | CASUARINA 16.5                                   | 1           | 239        | 0.30         | 5.0               | CASUARINA              | 20.0         | 1             | $\land \qquad \bigcirc$         |
| 32<br>33      | 0.30         | 8.0<br>4.0  | CASUARINA 14.0<br>EUCALYPT 10.2  | 1           | 136<br>137        | 0.30                 | 7.0<br>7.0        | CASUARINA 15.0<br>CASUARINA 13.5                 | 1           | 240<br>241 | 0.30         | 4.0               | CASUARINA<br>EUCALYPT  |              | 2             |                                 |
| 33<br>34      | 0.20         | 4.0         | EUCALYPT 10.2<br>EUCALYPT 10.6   | 1           | 137               | 0.30                 | 4.0               | CASUARINA 13.5<br>CASUARINA 13.5                 | 1           | 241        | 0.30         | 6.0               | CASUARINA              |              | 1             |                                 |
| 35            | 0.20         | 6.0         | EUCALYPT 7.5                     | 2           | 139               | 0.50                 | 6.0               | CASUARINA 13.0                                   | 4           | 243        | 0.55         | 7.0               | CASUARINA              | 21.9         | 1             | \ <b>`</b> ()                   |
| 36            | 0.25         | 6.0         | WATTLE 7.5                       | 1           | 140               | 0.45                 | 8.0               | CASUARINA 17.0                                   | 1           | 244        | 0.30         | 5.0               | CASUARINA              |              | 1             | ) °C.                           |
| 37<br>38      | 0.20         | 4.0         | CASUARINA 8.1<br>EUCALYPT 14.2   | 1           | 141<br>142        | 0.35                 | 6.0<br>6.0        | CASUARINA 14.0<br>CASUARINA 15.5                 | 1           | 245<br>246 | 0.30         | 10.0<br>7.0       | EUCALYPT<br>CASUARINA  |              | <u>1</u><br>1 | CRESCENT                        |
| 39            | 0.40         | 7.0         | CASUARINA 16.8                   | 1           | 143               | 0.30                 | 5.0               | CASUARINA 14.2                                   | 1           | 247        | 0.30         | 5.0               | CASUARINA              |              | 1             | 1 1.                            |
| 40            | 0.73         | 8.0         | EUCALYPT 14.5                    | 3           | 144               | 0.30                 | 6.0               | CASUARINA 14.4                                   | 1           | 248        | 0.25         | 5.0               | CASUARINA              |              | 1             | -                               |
| 41<br>42      | 0.40         | 7.0         | CASUARINA 16.8<br>EUCALYPT 11.2  | 1           | 145<br>146        | 0.30                 | 6.0<br>8.0        | CASUARINA 15.4                                   | 1           | 249<br>250 | 0.35         | 5.0<br>10.0       | CASUARINA<br>EUCALYPT  |              | 1             | 78                              |
| 42            | 0.45         | 4.0         | CASUARINA 13.0                   | 1           | 148               | 0.40                 | 6.0               | CASUARINA 14.5                                   | 8           | 250        | 0.30         | 9.0               | EUCALYPT               |              | 1             | / 0                             |
| 44            | 0.33         | 10.0        | EUCALYPT 11.6                    | 1           | 148               | 0.30                 | 6.0               | CASUARINA 14.0                                   | 1           | 252        | 0.25         | 8.0               | EUCALYPT               |              | 1             |                                 |
| 45            | 0.40         | 6.0         | CASUARINA 13.8                   | 1           | 149               | 0.35                 | 5.0               | EUCALYPT 9.5                                     | 2           | 253        | 0.38         | 7.0               | EUCALYPT               |              | 1             |                                 |
| 46<br>47      | 0.35         | 10.0<br>9.0 | EUCALYPT 13.5<br>CASUARINA 15.9  | 1           | 150<br>151        | 0.40                 | 6.0<br>6.0        | EUCALYPT 10.4<br>EUCALYPT 8.7                    | 2           | 254<br>255 | 0.50         | 6.0               | CASUARINA<br>CASUARINA |              | 2             |                                 |
| 48            | 0.40         | 7.0         | CASUARINA 16.0                   | 1           | 152               | 0.25                 | 6.0               | EUCALYPT 11.9                                    | 1           | 256        | 0.60         | 11.0              | EUCALYPT               |              | 2             |                                 |
| 49            | 0.45         | 7.0         | CASUARINA 13.8                   | 1           | 153               | 0.30                 | 5.0               | EUCALYPT 8.5                                     | 2           | 257        | 0.30         | 7.0               | CASUARINA              |              | 1             |                                 |
| 50<br>51      | 0.25         | 6.0<br>5.0  | CASUARINA 10.5<br>EUCALYPT 9.9   | 1           | 154<br>155        | 0.35<br>0.25         | 4.0<br>7.0        | EUCALYPT 7.0<br>EUCALYPT 11.3                    | 4           | 258<br>259 | 0.37         | 10.0<br>7.0       | EUCALYPT<br>CASUARINA  |              | <u>1</u><br>1 |                                 |
| 52            | 0.30         | 6.0         | EUCALYPT 9.4                     | 1           | 155               | 0.40                 | 7.0               | EUCALYPT 9.4                                     | 3           | 255        | 0.40         | 5.0               | EUCALYPT               | 9.8          | 2             |                                 |
| 53            | 0.45         | 6.0         | EUCALYPT 8.2                     | 2           | 157               | 0.20                 | 6.0               | EUCALYPT 11.3                                    | 1           | 261        | 0.30         | 7.0               | EUCALYPT               | 9.8          | 2             |                                 |
| 54            | 0.25         | 4.0         | CASUARINA 7.1                    | 1           | 158               | 0.35                 | 6.0               | EUCALYPT 11.4                                    | 3           | 262        | 0.30         | 5.0               | CASUARINA              |              | 1             |                                 |
| 55<br>56      | 0.25         | 4.0         | CASUARINA 9.6<br>EUCALYPT 8.2    | 1<br>2      | 159<br>160        | 0.30                 | 5.0<br>8.0        | CASUARINA 9.0<br>EUCALYPT 11.6                   | 2           | 263<br>264 | 0.30         | 8.0               | CASUARINA<br>EUCALYPT  |              | <br>2         |                                 |
| 57            | 0.25         | 5.0         | EUCALYPT 7.0                     | 2           | 161               | 0.80                 | 6.0               | EUCALYPT 11.2                                    | 4           | 265        | 0.40         | 5.0               | CASUARINA              |              | 1             |                                 |
| 58            | 0.25         | 5.0         | EUCALYPT 5.5                     | 1           | 162               | 0.40                 | 4.0               | EUCALYPT 12.3                                    | 2           | 266        | 0.50         | 8.0               | EUCALYPT               | 15.2         | 2             |                                 |
| 59<br>60      | 0.45         | 8.0         | CASUARINA 11.2<br>CASUARINA 7.0  | 2           | 163<br>164        | 0.20                 | 5.0<br>5.0        | EUCALYPT 8.0<br>EUCALYPT 12.1                    | 1           | 267<br>268 | 0.20         | 4.0               | EUCALYPT<br>EUCALYPT   |              | 1<br>2        |                                 |
| 61            | 0.40         | 5.0         | EUCALYPT 7.0                     | 3           | 165               | 0.24                 | 5.0               | EUCALYPT 13.1                                    | 1           | 269        | 0.35         | 6.0               | CASUARINA              |              | 1             |                                 |
| 62            | 0.40         | 6.0         | EUCALYPT 7.3                     | 3           | 166               | 0.42                 | 10.0              | EUCALYPT 12.5                                    | 1           | 270        | 0.30         | 6.0               | CASUARINA              |              | 1             |                                 |
| 63            | 0.35         | 7.0         | EUCALYPT 5.4                     | 3           | 167               | 0.36                 | 4.0               | CASUARINA 7.6                                    | 2           | 271        | 0.40         | 8.0               | EUCALYPT               |              | 1             | / /                             |
| 64<br>65      | 0.20         | 4.0         | EUCALYPT 6.7<br>CASUARINA 17.0   | 2           | 168<br>169        | 0.22                 | 4.0               | EUCALYPT 12.6<br>EUCALYPT 15.6                   | 1<br>2      | 272<br>273 | 0.45         | 6.0<br>5.0        | CASUARINA<br>EUCALYPT  |              | 2             |                                 |
| 66            | 0.20         | 5.0         | EUCALYPT 6.4                     | 1           | 170               | 0.35                 | 6.0               | EUCALYPT 11.2                                    | 2           | 274        | 0.47         | 4.0               | EUCALYPT               |              | 4             |                                 |
| 67            | 0.40         | 6.0         | CASUARINA 18.0                   | 1           | 171               | 0.25                 | 6.0               | EUCALYPT 13.1                                    | 1           | 275        | 0.30         | 7.0               | CASUARINA              |              | 1             |                                 |
| 68<br>69      | 0.25         | 5.0         | EUCALYPT 7.7<br>CASUARINA 15.0   | 1           | 172<br>173        | 0.20                 | 4.0               | EUCALYPT 10.0<br>CASUARINA 10.2                  | 1           | 276<br>277 | 0.35         | 7.0               | EUCALYPT<br>EUCALYPT   | 11.1<br>12.6 | 2             |                                 |
| 70            | 0.30         | 6.0         | EUCALYPT 8.0                     | 3           | 173               | 0.22                 | 4.0               | CASUARINA 10.2<br>CASUARINA 12.6                 | 1           | 277        | 0.85         | 7.0               | CASUARINA              |              | 3<br>1        |                                 |
| 71            | 0.20         | 4.0         | CASUARINA 14.0                   | 1           | 175               | 0.38                 | 5.0               | CASUARINA 13.1                                   | 2           | 279        | 0.20         | 6.0               | EUCALYPT               | 8.9          | 1             |                                 |
| 72            | 0.75         | 12.0        | CASUARINA 11.8                   | 2           | 176               | 0.26                 | 3.0               | CASUARINA 13.9                                   | 2           | 280        | 0.20         | 4.0               | CASUARINA              |              | 1             | / 2 ``                          |
| 73<br>74      | 0.30         | 6.0<br>6.0  | CASUARINA 12.6<br>CASUARINA 17.0 | 1           | 177<br>178        | 0.27                 | 3.0<br>4.0        | CASUARINA 11.2<br>EUCALYPT 6.0                   | 2           | 281<br>282 | 0.35         | 6.0<br>6.0        | CASUARINA<br>CASUARINA |              | 2             |                                 |
| 75            | 0.38         | 10.0        | CASUARINA 10.8                   | 1           | 179               | 0.20                 | 3.0               | CASUARINA 11.0                                   | 1           | 283        | 0.45         | 7.0               | CASUARINA              |              | 1             | 65                              |
| 76            | 0.50         | 9.0         | CASUARINA 15.9                   | 1           | 180               | 0.20                 | 3.0               | CASUARINA 10.9                                   | 1           | 284        | 0.50         | 7.0               | CASUARINA              |              | 4             |                                 |
| 77<br>78      | 0.50         | 10.0<br>8.0 | CASUARINA 20.0<br>CASUARINA 10.9 | 1<br>2      | 181<br>182        | 0.22                 | 4.0               | CASUARINA 10.5<br>EUCALYPT 9.9                   | 1           | 285<br>286 | 0.35         | 7.0               | CASUARINA<br>CASUARINA |              | 1<br>2        | 512                             |
| 78            | 0.40         | 5.0         | CASUARINA 10.9                   | 2           | 182               | 0.20                 | 3.0<br>10.0       | CASUARINA 11.8                                   | 1           | 286        | 0.30         | 5.0               | EUCALYPT               |              | 2             | BITI                            |
| 80            | 0.25         | 5.0         | CASUARINA 12.3                   | 1           | 184               | 0.20                 | 4.0               | CASUARINA 9.9                                    | 1           | 288        | 0.25         | 5.0               | CASUARINA              | 11.4         | 1             | BIII                            |
| 81            | 0.30         | 6.0         | CASUARINA 15.3                   | 1           | 185               | 0.23                 | 4.0               | CASUARINA 12.1                                   | 1           | 289        | 0.25         | 5.0               | CASUARINA              |              | <u> </u>      |                                 |
| 82<br>83      | 0.35         | 6.0<br>6.0  | CASUARINA 10.8<br>CASUARINA 14.1 | 2           | 186<br>187        | 0.40                 | 10.0<br>3.0       | CASUARINA 14.3<br>CASUARINA 10.4                 | 1<br>2      | 290<br>291 | 0.50         | 5.0<br>10.0       | CASUARINA<br>CASUARINA |              | 5             | AB.                             |
| 84            | 0.45         | 8.0         | CASUARINA 16.4                   | 1           | 187               | 0.28                 | 4.0               | CASUARINA 10.4                                   | 1           | 292        | 0.50         | 6.0               | CASUARINA              |              | 5             | 572-K51 DANGER                  |
| 85            | 0.30         | 8.0         | CASUARINA 14.8                   | 1           | 189               | 0.60                 | 7.0               | CASUARINA 10.3                                   | 3           | 293        | 0.40         | 8.0               | CASUARINA              |              | 1             | 512-52                          |
| 86<br>87      | 0.20         | 4.0         | CASUARINA 11.7<br>CASUARINA 15.8 | 1           | 190<br>191        | 0.35                 | 8.0<br>5.0        | CONIFER 12.0<br>EUCALYPT 5.0                     | 1<br>2      | 294<br>295 | 0.20         | 4.0               | CASUARINA<br>CASUARINA |              | <u>1</u><br>1 |                                 |
| 87<br>88      | 0.25         | 10.0        | CASUARINA 15.8<br>CASUARINA 16.4 | 1           | 191<br>192        | 0.40                 | 8.0               | CONIFER 13.5                                     | 1           | 295        | 0.35         | 6.0               | CASUARINA              |              | 1             | 215                             |
| 89            | 0.35         | 6.0         | CASUARINA 12.1                   | 1           | 193               | 0.25                 | 4.0               | EUCALYPT 5.1                                     | 3           | 297        | 0.30         | 6.0               | CASUARINA              | 9.2          | 2             | 215 9214                        |
| 90            | 0.30         | 4.0         | CASUARINA 16.7                   | 3           | 194               | 0.40                 | 9.0               | CONIFER 15.0                                     | 1           | 298        | 0.30         | 6.0               | CASUARINA              |              | 3             | 213                             |
| 91<br>92      | 0.25         | 4.0         | CASUARINA 9.9<br>CASUARINA 13.0  | 1           | 195<br>196        | 0.30                 | 7.0<br>10.0       | EUCALYPT 9.1<br>CONIFER 15.0                     | 1           | 299<br>300 | 0.50         | 8.0<br>9.0        | CASUARINA<br>EUCALYPT  |              | <u>1</u><br>2 |                                 |
| 93            | 0.25         | 4.0         | CASUARINA 18.0                   | 1           | 190               | 0.27                 | 5.0               | EUCALYPT 7.7                                     | 1           | 301        | 0.40         | 9.0               | CASUARINA              |              | 1             | + ( ( ) 212 =/ //////           |
| 94            | 0.20         | 4.0         | CASUARINA 7.5                    | 1           | 198               | 0.20                 | 6.0               | CONIFER 13.0                                     | 1           | 302        | 0.90         | 13.0              | CASUARINA              |              | 3             | +<br>51<br>+<br>70<br>4211<br>H |
| 95<br>96      | 0.35         | 5.0<br>9.0  | CASUARINA 12.0<br>CASUARINA 13.5 | 1           | 199<br>200        | 0.55                 | 5.0<br>6.0        | EUCALYPT 6.8<br>CONIFER 0.0                      | 4           | 303<br>304 | 0.35         | 8.0<br>8.0        | CASUARINA<br>EUCALYPT  |              | <u>1</u><br>1 | 3 210 H R R                     |
| 96<br>97      | 0.37         | 5.0         | CASUARINA 13.5<br>CASUARINA 13.7 | 1           | 200               | 0.20                 | 4.0               | CONIFER 0.0<br>CONIFER 12.5                      | 1           | 304        | 0.30         | 6.0               | EUCALYPT               | 10.0<br>7.8  | 1             |                                 |
| 98            | 0.38         | 11.0        | CASUARINA 14.2                   | 1           | 202               | 0.20                 | 4.0               | CASUARINA 10.0                                   | 1           | 306        | 0.35         | 6.0               | EUCALYPT               | 11.8         | 2             |                                 |
| 99            | 0.25<br>0.20 | 5.0         | CASUARINA 12.2                   | 1           | 203               | 0.80                 | 8.0               | EUCALYPT 9.5                                     | 4           | 307        | 0.35         | 6.0               | EUCALYPT               | 10.8         | 1             |                                 |
|               | 11.70        | 4.0         | CASUARINA 15.0<br>CASUARINA 16.9 | 1           | 204<br>205        | 0.25                 | 6.0<br>12.0       | CASUARINA 12.5<br>EUCALYPT 14.4                  | 1           | 308<br>309 | 0.25         | 4.0               | EUCALYPT<br>EUCALYPT   | 11.2<br>12.5 | 1<br>2        | + 207 A                         |
| 100           |              | 8.0         |                                  | . ÷         |                   | 50                   |                   |                                                  |             |            |              |                   |                        |              |               |                                 |
|               | 0.32         | 8.0<br>4.0  | CASUARINA 13.0                   | 1           | 206               | 0.25                 | 6.0               | CASUARINA 10.5                                   | 1           | 310        | 0.50         | 10.0              | CASUARINA              | 14.3         | 4             | + GRASS                         |
| 100<br>101    | 0.32         |             |                                  | 1<br>1<br>1 | 206<br>207<br>208 | 0.25<br>0.30<br>0.20 | 6.0<br>7.0<br>4.0 | CASUARINA 10.5<br>CASUARINA 14.3<br>CONIFER 11.0 | 1<br>1<br>1 | 310<br>311 | 0.50<br>0.35 | 10.0<br>7.0       | CASUARINA              |              | 4             | + GRASS CONTRACTOR              |

| LEGEND                                           |
|--------------------------------------------------|
| COMMUNICATION-PIT<br>• ELECTRICITY-POLE          |
| G GAS-MARKER POST                                |
| G GAS-MARKER SIGN                                |
| MINOR STRUCTURE-BOLLARD                          |
| SIGNAGE-ONE POST     STORM WATER-GRATED PIT      |
| STORM WATER-MANHOLE                              |
| ss STORM WATER-SUBSOIL                           |
| VEGETATION-TREE                                  |
| BUILDING-RAILING                                 |
| - telstra (B) - COMMUNICATION - TELSTRA LINE U/G |
| TRANSACT (B) - COMMUNICATION - TRANSACT LINE U/G |
| ELEC (A) — ELECTRICITY-LINE A/G                  |
| GAS(B)GAS-PIPE U/G                               |
| MINOR STRUCTURE-FENCE                            |
| MINOR STRUCTURE-GATE                             |
|                                                  |
| STORM WATER-CHAMBER U/G                          |
| STORM WATER-CULVERT, BOX                         |
|                                                  |
| STORM WATER-SPOON DRAIN                          |
| TOPOGRAPHIC-BOTTOM OF BANK                       |
|                                                  |
|                                                  |



| ORIG       |   | SURVEY       | DRAWN             | CHECK | APPROVED | ZONE | SURVEY   | ISSUE    | Notes: |
|------------|---|--------------|-------------------|-------|----------|------|----------|----------|--------|
| ISS        |   | Schedule 2.3 | 2 (a)( <b>ii)</b> |       |          |      | 23/09/14 | 07/10/14 |        |
| Ś          | A |              |                   |       |          |      |          |          |        |
| AMENDMENTS | в |              |                   |       |          |      |          |          |        |
| DM         | с |              |                   |       |          |      |          |          |        |
| ΛEN        | D |              |                   |       |          |      |          |          |        |
| A          | Е |              |                   |       |          |      |          |          |        |





0.20m

1 of 1 A1

14062\_001.dwg

APPENDIX 3.02: SERVICES POTHOLING REPORT, LEACH STEGER 2015

# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |              |                      |  |  |  |
|--------------------------|----------------|--------------|----------------------|--|--|--|
| SERVICE TYPE:            | GAS            | POTHOLE NO.  | 1.0                  |  |  |  |
| OBSERVATION              |                |              |                      |  |  |  |
| DATE:                    | 15/01/2015     | OBSERVER:    | Schedule 2.2 (a)(ii) |  |  |  |
| POSITION (ACT/GPS        |                |              |                      |  |  |  |
| EASTING:                 | 206037.812     | LATITUDE:    | -35.43471710         |  |  |  |
| NORTHING:                | 588132.526     | LONGITUDE:   | 149.09556070         |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            |              |                      |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.90m        |                      |  |  |  |
| TOP OI                   | F SERVICE:     | RL576.107    |                      |  |  |  |
| DESCRIPTION              | DESCRIPTION    |              |                      |  |  |  |
| MA                       | TERIAL:        | PIPE - STEEL |                      |  |  |  |
| N                        | OTES:          | 200mm (x1)   |                      |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  | DETAILS        |               |                      |  |  |  |  |
|--------------------------|----------------|---------------|----------------------|--|--|--|--|
| SERVICE TYPE:            | COMM - Telstra | POTHOLE NO.   | 1.1                  |  |  |  |  |
| OBSERVATION              |                |               |                      |  |  |  |  |
| DATE:                    | 15/01/2015     | OBSERVER:     | Schedule 2.2 (a)(ii) |  |  |  |  |
| POSITION (ACT/GPS        | 3)             |               |                      |  |  |  |  |
| EASTING:                 | 206037.748     | LATITUDE:     | -35.42317348         |  |  |  |  |
| NORTHING:                | 588132.620     | LONGITUDE:    | 149.07704516         |  |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            |               |                      |  |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.72m         |                      |  |  |  |  |
| TOP OI                   | F SERVICE:     | RL576.254     |                      |  |  |  |  |
| DESCRIPTION              |                |               |                      |  |  |  |  |
| MA                       | TERIAL:        | CONDUIT - PVC |                      |  |  |  |  |
| N                        | OTES:          | 110mm (x2)    |                      |  |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS           |                |                  |                      |  |  |
|-------------------|----------------|------------------|----------------------|--|--|
| SERVICE TYPE:     | GAS            | POTHOLE NO.      | 2.0                  |  |  |
| OBSERVATION       |                |                  |                      |  |  |
| DATE:             | 15/01/2015     | <b>OBSERVER:</b> | Schedule 2.2 (a)(ii) |  |  |
| POSITION (ACT/GPS | 3)             |                  |                      |  |  |
| EASTING:          | 206021.802     | LATITUDE:        | -35.40659930         |  |  |
| NORTHING:         | 588122.231     | LONGITUDE:       | 149.07588810         |  |  |
| REDUCED LEVEL (AF | ID)            |                  |                      |  |  |
| COVER DEP         | TH OF SERVICE: | 1.00m            |                      |  |  |
| TOP O             | F SERVICE:     | RL576.538        |                      |  |  |
| DESCRIPTION       |                |                  |                      |  |  |
| MA                | TERIAL:        | PIPE - STEEL     |                      |  |  |
| N                 | OTES:          | 200mm (x1)       |                      |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |               |                      |  |  |
|--------------------------|----------------|---------------|----------------------|--|--|
| SERVICE TYPE:            | COMM - Telstra | POTHOLE NO.   | 2.1                  |  |  |
| OBSERVATION              |                |               |                      |  |  |
| DATE:                    | 15/01/2015     | OBSERVER:     | Schedule 2.2 (a)(ii) |  |  |
| <b>POSITION (ACT/GPS</b> | 3)             |               |                      |  |  |
| EASTING:                 | 206021.813     | LATITUDE:     | -35.43471710         |  |  |
| NORTHING:                | 588122.185     | LONGITUDE:    | 149.09556070         |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            |               |                      |  |  |
| COVER DEP                | TH OF SERVICE: | 0.89m         |                      |  |  |
| TOP OI                   | F SERVICE:     | RL576.663     |                      |  |  |
| DESCRIPTION              |                |               |                      |  |  |
| MA                       | TERIAL:        | CONDUIT - PVC |                      |  |  |
| N                        | OTES:          | 110mm (x2)    |                      |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS           |                |              |                      |  |  |
|-------------------|----------------|--------------|----------------------|--|--|
| SERVICE TYPE:     | GAS            | POTHOLE NO.  | 3.0                  |  |  |
| OBSERVATION       |                |              |                      |  |  |
| DATE:             | 15/01/2015     | OBSERVER:    | Schedule 2.2 (a)(ii) |  |  |
| POSITION (ACT/GPS | 3)             |              |                      |  |  |
| EASTING:          | 206008.496     | LATITUDE:    | -35.42482490         |  |  |
| NORTHING:         | 588113.371     | LONGITUDE:   | 149.07590290         |  |  |
| REDUCED LEVEL (AF | ID)            |              |                      |  |  |
| COVER DEP         | TH OF SERVICE: | 1.03m        |                      |  |  |
| TOP O             | F SERVICE:     | RL575.393    |                      |  |  |
| DESCRIPTION       |                |              |                      |  |  |
| MA                | TERIAL:        | PIPE - STEEL |                      |  |  |
| N                 | OTES:          | 200mm (x1)   |                      |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  | DETAILS        |               |                      |  |  |  |  |
|--------------------------|----------------|---------------|----------------------|--|--|--|--|
| SERVICE TYPE:            | COMM - Telstra | POTHOLE NO.   | 3.1                  |  |  |  |  |
| OBSERVATION              |                |               |                      |  |  |  |  |
| DATE:                    | 15/01/2015     | OBSERVER:     | Schedule 2.2 (a)(ii) |  |  |  |  |
| POSITION (ACT/GPS        | 3)             |               |                      |  |  |  |  |
| EASTING:                 | 206008.499     | LATITUDE:     | -35.43471710         |  |  |  |  |
| NORTHING:                | 588113.372     | LONGITUDE:    | 149.09556070         |  |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            | -             |                      |  |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.81m         |                      |  |  |  |  |
| TOP OI                   | F SERVICE:     | RL575.611     |                      |  |  |  |  |
| DESCRIPTION              |                |               |                      |  |  |  |  |
| MA                       | TERIAL:        | CONDUIT - PVC |                      |  |  |  |  |
| N                        | OTES:          | 110mm (x2)    |                      |  |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                      |              |                      |  |  |  |
|--------------------------|----------------------|--------------|----------------------|--|--|--|
| SERVICE TYPE:            | GAS                  | POTHOLE NO.  | 4.0                  |  |  |  |
| OBSERVATION              |                      |              |                      |  |  |  |
| DATE:                    | 16/01/2015           | OBSERVER:    | Schedule 2.2 (a)(ii) |  |  |  |
| <b>POSITION (ACT/GPS</b> |                      |              |                      |  |  |  |
| EASTING:                 | 205978.631           | LATITUDE:    | -35.42382680         |  |  |  |
| NORTHING:                | NORTHING: 588094.010 |              | 149.07781190         |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)                  |              |                      |  |  |  |
| COVER DEP                | TH OF SERVICE:       | 0.65m        |                      |  |  |  |
| TOP OI                   | F SERVICE:           | RL574.876    |                      |  |  |  |
| DESCRIPTION              | DESCRIPTION          |              |                      |  |  |  |
| MA                       | TERIAL:              | PIPE - STEEL |                      |  |  |  |
| N                        | OTES:                | 200mm (x1)   |                      |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |              |                      |  |  |  |
|--------------------------|----------------|--------------|----------------------|--|--|--|
| SERVICE TYPE:            | GAS            | POTHOLE NO.  | 5.0                  |  |  |  |
| OBSERVATION              |                |              |                      |  |  |  |
| DATE:                    | 16/01/2015     | OBSERVER:    | Schedule 2.2 (a)(ii) |  |  |  |
| <b>POSITION (ACT/GPS</b> | 3)             |              |                      |  |  |  |
| EASTING:                 | 205966.034     | LATITUDE:    | -35.42382680         |  |  |  |
| NORTHING:                | 588109.480     | LONGITUDE:   | 149.07781190         |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ĪD)            |              |                      |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.95m        |                      |  |  |  |
| TOP OI                   | F SERVICE:     | RL571.084    |                      |  |  |  |
| DESCRIPTION              | DESCRIPTION    |              |                      |  |  |  |
| MA                       | TERIAL:        | PIPE - STEEL |                      |  |  |  |
| N                        | OTES:          | 200mm (x1)   |                      |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |                         |                        |  |  |  |  |  |
|--------------------------|----------------|-------------------------|------------------------|--|--|--|--|--|
| SERVICE TYPE:            | GAS            | POTHOLE NO.             | 6.0                    |  |  |  |  |  |
| OBSERVATION              |                |                         |                        |  |  |  |  |  |
| DATE:                    | 15/01/2015     | OBSERVER:               | Schedule 2.2 (a)(ii)   |  |  |  |  |  |
| <b>POSITION (ACT/GPS</b> | 3)             |                         |                        |  |  |  |  |  |
| EASTING:                 | 205942.782     | LATITUDE:               | -35.42251940           |  |  |  |  |  |
| NORTHING:                | 588148.729     | LONGITUDE: 149.07834680 |                        |  |  |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            |                         |                        |  |  |  |  |  |
| COVER DEP                | TH OF SERVICE: |                         | 1.25m                  |  |  |  |  |  |
| TOP OI                   | F SERVICE:     | RI                      | -569.235               |  |  |  |  |  |
| DESCRIPTION              |                |                         |                        |  |  |  |  |  |
| MA                       | TERIAL:        | PIPE - STEEL            |                        |  |  |  |  |  |
| N                        | OTES:          | 200mm (x1) N            | ote: Water Backfilling |  |  |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |             |                      |  |  |  |  |  |
|--------------------------|----------------|-------------|----------------------|--|--|--|--|--|
| SERVICE TYPE:            | GAS            | POTHOLE NO. | 7.0                  |  |  |  |  |  |
| OBSERVATION              |                |             |                      |  |  |  |  |  |
| DATE:                    | 15/01/2015     | OBSERVER:   | Schedule 2.2 (a)(ii) |  |  |  |  |  |
| POSITION (ACT/GPS        |                |             |                      |  |  |  |  |  |
| EASTING:                 | 205931.604     | LATITUDE:   | -35.42334900         |  |  |  |  |  |
| NORTHING:                | 588154.101     | LONGITUDE:  | 149.08107570         |  |  |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            |             |                      |  |  |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.80m       |                      |  |  |  |  |  |
| TOP OI                   | F SERVICE:     | R           | L571.190             |  |  |  |  |  |
| DESCRIPTION              |                |             |                      |  |  |  |  |  |
| MA                       | TERIAL:        | PIPE - P    | POLYETHYLENE         |  |  |  |  |  |
| N                        | OTES:          | 20          | 0mm (x1)             |  |  |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |             |                      |  |  |  |  |  |
|--------------------------|----------------|-------------|----------------------|--|--|--|--|--|
| SERVICE TYPE:            | GAS            | POTHOLE NO. | 8.0                  |  |  |  |  |  |
| OBSERVATION              |                |             |                      |  |  |  |  |  |
| DATE:                    | 16/01/2015     | OBSERVER:   | Schedule 2.2 (a)(ii) |  |  |  |  |  |
| POSITION (ACT/GPS        | 3)             |             |                      |  |  |  |  |  |
| EASTING:                 | 205918.112     | LATITUDE:   | -35.42382680         |  |  |  |  |  |
| NORTHING:                | 588171.447     | LONGITUDE:  | 149.07781190         |  |  |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            |             |                      |  |  |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.90m       |                      |  |  |  |  |  |
| TOP OI                   | F SERVICE:     | RI          | -573.029             |  |  |  |  |  |
| DESCRIPTION              |                |             |                      |  |  |  |  |  |
| MA                       | TERIAL:        | PI          | PE - STEEL           |  |  |  |  |  |
| N                        | OTES:          | 20          | 0mm (x1)             |  |  |  |  |  |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |             |                      |
|--------------------------|----------------|-------------|----------------------|
| SERVICE TYPE:            | COMM - Telstra | POTHOLE NO. | 8.1                  |
| OBSERVATION              |                |             |                      |
| DATE:                    | 16/01/2015     | OBSERVER:   | Schedule 2.2 (a)(ii) |
| POSITION (ACT/GPS        | 3)             |             |                      |
| EASTING:                 | 205917.550     | LATITUDE:   | -35.42382680         |
| NORTHING:                | 588171.644     | LONGITUDE:  | 149.07781190         |
| <b>REDUCED LEVEL (AH</b> | ID)            |             |                      |
| COVER DEP                | TH OF SERVICE: |             | 0.60m                |
| TOP OI                   | F SERVICE:     | R           | L573.298             |
| DESCRIPTION              |                |             |                      |
| MA                       | TERIAL:        | CON         | IDUIT - PVC          |
| N                        | OTES:          | 10          | 0mm (x2)             |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS           |                |             |                      |
|-------------------|----------------|-------------|----------------------|
| SERVICE TYPE:     | GAS            | POTHOLE NO. | 9.0                  |
| OBSERVATION       |                |             |                      |
| DATE:             | 16/01/2015     | OBSERVER:   | Schedule 2.2 (a)(ii) |
| POSITION (ACT/GPS | 3)             |             |                      |
| EASTING:          | 205932.033     | LATITUDE:   | -35.42313970         |
| NORTHING:         | 588185.469     | LONGITUDE:  | 149.07778570         |
| REDUCED LEVEL (AF | ID)            |             |                      |
| COVER DEP         | TH OF SERVICE: |             | 0.85m                |
| TOP O             | F SERVICE:     | R           | L573.581             |
| DESCRIPTION       |                |             |                      |
| MA                | TERIAL:        | PII         | PE - STEEL           |
| N                 | OTES:          | 20          | 0mm (x1)             |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

| DETAILS                  |                |             |                      |  |  |  |  |  |
|--------------------------|----------------|-------------|----------------------|--|--|--|--|--|
| SERVICE TYPE:            | COMM - Telstra | POTHOLE NO. | 9.1                  |  |  |  |  |  |
| OBSERVATION              |                |             |                      |  |  |  |  |  |
| DATE:                    | 16/01/2015     | OBSERVER:   | Schedule 2.2 (a)(ii) |  |  |  |  |  |
| POSITION (ACT/GPS        | 3)             |             |                      |  |  |  |  |  |
| EASTING:                 | 205932.035     | LATITUDE:   | -35.42382680         |  |  |  |  |  |
| NORTHING:                | 588185.468     | LONGITUDE:  | 149.07781190         |  |  |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ID)            |             |                      |  |  |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.55m       |                      |  |  |  |  |  |
| TOP OI                   | F SERVICE:     | R           | L573.860             |  |  |  |  |  |
| DESCRIPTION              |                |             |                      |  |  |  |  |  |
| MA                       | TERIAL:        | CON         | IDUIT - PVC          |  |  |  |  |  |
| N                        | OTES:          | 10          | 0mm (x2)             |  |  |  |  |  |





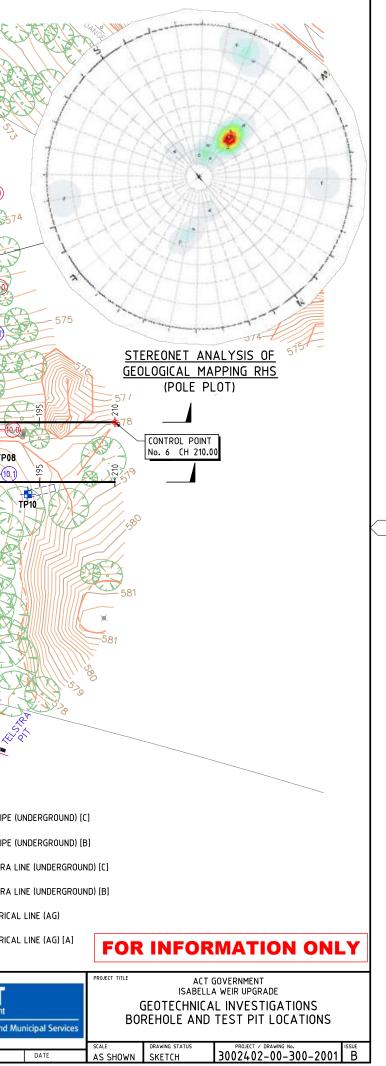
# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong

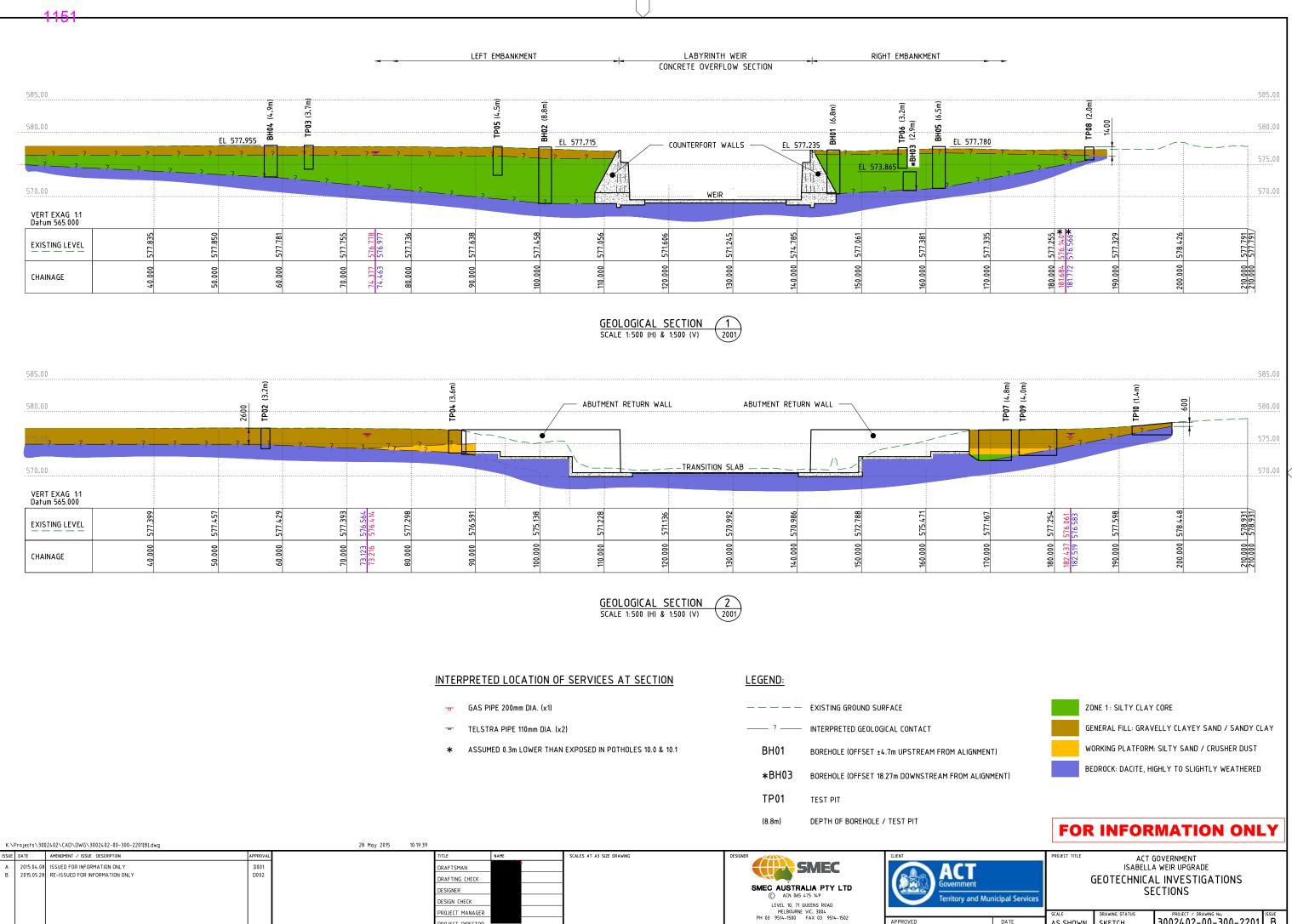
| DETAILS                  |                |             |                      |
|--------------------------|----------------|-------------|----------------------|
| SERVICE TYPE:            | GAS            | POTHOLE NO. | 10.0                 |
| OBSERVATION              | -              |             |                      |
| DATE:                    | 15/01/2015     | OBSERVER:   | Schedule 2.2 (a)(ii) |
| POSITION (ACT/GPS        | 3)             |             |                      |
| EASTING:                 | 205952.186     | LATITUDE:   | -35.42209410         |
| NORTHING:                | 588205.248     | LONGITUDE:  | 149.07701690         |
| <b>REDUCED LEVEL (AH</b> | ĪD)            |             |                      |
| COVER DEP                | TH OF SERVICE: |             | 1.40m                |
| TOP OI                   | F SERVICE:     | RI          | L576.361             |
| DESCRIPTION              |                |             |                      |
| MA                       | TERIAL:        | PI          | PE - STEEL           |
| N                        | OTES:          | 20          | 0mm (x1)             |





# HYDRO EXCAVATION – Pothole Report Isabella Weir Upgrade – Greenway, Tuggeranong


| DETAILS                  |                |             |                      |  |  |  |  |  |
|--------------------------|----------------|-------------|----------------------|--|--|--|--|--|
| SERVICE TYPE:            | COMM - Telstra | POTHOLE NO. | 10.1                 |  |  |  |  |  |
| OBSERVATION              |                |             |                      |  |  |  |  |  |
| DATE:                    | 15/01/2015     | OBSERVER:   | Schedule 2.2 (a)(ii) |  |  |  |  |  |
| POSITION (ACT/GPS        | 3)             |             |                      |  |  |  |  |  |
| EASTING:                 | 205952.122     | LATITUDE:   | -35.42245240         |  |  |  |  |  |
| NORTHING:                | 588205.330     | LONGITUDE:  | 149.07776010         |  |  |  |  |  |
| <b>REDUCED LEVEL (AH</b> | ĪD)            |             |                      |  |  |  |  |  |
| COVER DEP                | TH OF SERVICE: | 0.85m       |                      |  |  |  |  |  |
| TOP OI                   | F SERVICE:     | RI          | -576.883             |  |  |  |  |  |
| DESCRIPTION              |                |             |                      |  |  |  |  |  |
| MA                       | TERIAL:        | CON         | IDUIT - PVC          |  |  |  |  |  |
| N                        | OTES:          | 10          | 0mm (x2)             |  |  |  |  |  |






APPENDIX 3.03: SMEC GEOTECHNICAL DRAWINGS 2015

|             |                 | 1450                                                                 |           |           |                                     |                     |                                                                                                  |                               |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-----------------|----------------------------------------------------------------------|-----------|-----------|-------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                 | CONTROL POINT<br>No. 7 CH 0.00                                       |           |           | EONET ANA<br>OGICAL MAI<br>(POLE PL | PPING LHS<br>OT)    | 5<br>5<br>5<br>5<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                               |                        | MANHOLE F<br>OUTLET PIF | DE SCUSTA. 32<br>SOL-574. 32<br>SOL- | AND CONCRETE<br>ING WALL                                 | RIGHTHAND CONCRETE                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | DFTAILS C       | DF UNDERGROUND SERVICE                                               | POTHOLING |           | \$ <b></b> ŧ                        | <del>↓€ ( ( )</del> | FUEL (C)                                                                                         |                               |                        | COLUMNER OF             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POND / //////////////////////////////////                | TRAINING WALL                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | POTHOLE         | SERVICE, MATERIAL, SIZE                                              | EASTING   | NORTHING  | R.L. TOP                            | DEPTH               | DETAILS OF SM                                                                                    | √ب<br>۱EC 2015 TEST           |                        |                         | SHEE TAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          | DUDALITY OF A                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | NO.             | GAS U/G STEEL 200mm                                                  | 206037.81 | 588132.53 | OF SERVICE                          | (m)<br>0.90         | TP / BH NO.                                                                                      | EASTING                       |                        | ELEVATION               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          | É ES                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 1.1             | TELSTRA U/G PVC 110mm                                                | 206037.75 | 588132.63 | 576.25                              | 0.72                | TP01                                                                                             | 206071.40                     | 588058.30              | 578.000                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ELEC (A)                                                 | La                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 2.0             | GAS U/G STEEL 200mm                                                  | 206021.80 | 588122.23 | 576.54                              | 1.00                | TP02                                                                                             | 206037.20                     | 588113.60              | 577.400                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 557 - CLE COTAT H                                        |                                                                                                                | The second secon |
|             | 2.1             | TELSTRA U/G PVC 110mm                                                | 206021.81 | 577122.18 | 576.66                              | 0.89                | TP03                                                                                             | 206030.24                     | 588116.62              | 577.500                 | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AKEFORD DRIVE                                            | 5. 5 5 5 ELEC (C)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 3.0             | GAS U/G STEEL 200mm                                                  | 206008.50 | 588113.37 | 575.39                              | 1.03                | TP04                                                                                             | 206018.70                     | 588136.14              | 577.000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INCLFORD DRIVE                                           |                                                                                                                | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 3.1             | TELSTRA U/G PVC 110mm                                                | 206008.50 | 588113.37 | 575.61                              | 0.81                | TP05                                                                                             | 206010.56                     | 588138.46              | 577.450                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - TYTVE                                                  |                                                                                                                | 4 <b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 150         | 4.0             | GAS U/G STEEL 200mm                                                  | 205978.63 | 588094.01 | 574.88                              | 0.65                | TP06                                                                                             | 205971.11                     | 588187.49              | 577.300                 | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14.0        | 5.0             | GAS U/G STEEL 200mm                                                  | 205966.03 | 588109.48 | 571.08                              | 0.95                | TP07                                                                                             | 205965.02                     | 588203.44              | 577.100                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>INTERPRETED CREST OF ZONE 1 CLAYCORE</li> </ul> | <u>UTILITIES:</u>                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 130         | 6.0             | GAS U/G STEEL 200mm                                                  | 205942.78 | 588148.73 | 569.24                              | 1.25                | TP08                                                                                             | 205950.37                     | 588208.05              | 577.700                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | GAS (C)                                                                                                        | GAS PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 120         | 7.0             | GAS U/G STEEL 200mm                                                  | 205931.60 | 588154.10 | 571.19                              | 0.80                | TP09                                                                                             | 205963.54                     | 588205.55              | 577.100                 | BH04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BOREHOLE                                                 | —— — GAS (B) ——                                                                                                | GAS PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0   110     | 8.0             | GAS U/G STEEL 200mm                                                  | 205918.11 | 588171.45 | 573.03                              | 0.90                | TP10<br>BH01                                                                                     | 205952.10                     | 588218.90<br>588176.00 | 577.700                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90 100      | 8.1<br>9.0      | TELSTRA U/G PVC 110mm<br>GAS U/G STEEL 200mm                         | 205917.55 | 588171.64 | 573.30<br>573.58                    | 0.60                | BH01<br>BH02                                                                                     | 205974.00                     | 588141.00              | 577.715                 | TP-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TEST PIT (UPSTREAM END OF EXCAVATION)                    | — — TE LS TR A (C) —                                                                                           | TELSTRA I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80 9        | 9.1             | TELSTRA U/G PVC 110mm                                                | 205932.04 | 588185.47 | 573.86                              | 0.55                | BH03                                                                                             | 205949.00                     | 588171.00              | 573.865                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MEASURED OUTLINE OF TEST PIT EXCAVATION                  | — — — TE LS TR A (B) —                                                                                         | TELSTRA I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 10.0            | GAS U/G STEEL 200mm                                                  | 205952.19 | 588205.25 | 576.36                              | 1.40                | BH04                                                                                             | 206029.00                     | 588108.00              | 577.955                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          | ELEC (C)                                                                                                       | ELECTRICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ON ORIGINAL | 10.1            | TELSTRA U/G PVC 110mm                                                | 205952.12 | 588205.33 | 576.88                              | 0.88                | BH05                                                                                             | 205964.00                     | 588189.00              | 577.780                 | 3.0 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POTHOLE No.                                              |                                                                                                                | ELECTRICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 mm        | K:\Projects\300 | 2402\CAD\DWG\3002402-00-300-2001[B]<br>AMENDMENT / ISSUE DESCRIPTION | .dwg      | <br>      | PPROVAL                             |                     | 28 May 2015 10:33                                                                                | 30<br>TITLE                   | NAME                   | SCALES A                | T A3 SIZE DRAWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DESIGNER                                                 | CLIENT                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>15    | A 2015.04.08    | ISSUED FOR INFORMATION ONLY<br>RE-ISSUED FOR INFORMATION ONLY        |           |           | D001<br>D002                        |                     |                                                                                                  | DRAFTSMAN                     | Schedule               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SMEC                                                     |                                                                                                                | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20 3        |                 |                                                                      |           |           |                                     |                     |                                                                                                  | DRAFTING CHECK<br>DESIGNER    | <                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SMEC AUSTRALIA PTY<br>(C) ACN 065 475 149                | and a second | Government                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10          |                 |                                                                      |           |           |                                     |                     |                                                                                                  | DESIGN CHECK<br>PROJECT MANAG | JER .                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LEVEL 10, 71 QUEENS ROAD<br>MELBOURNE VIC. 3004          |                                                                                                                | Territory and M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0           |                 |                                                                      |           |           |                                     |                     |                                                                                                  | PROJECT DIRECT                |                        |                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH 03 9514-1500 FAX 03 9514-                             | 1502 APPROVED                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

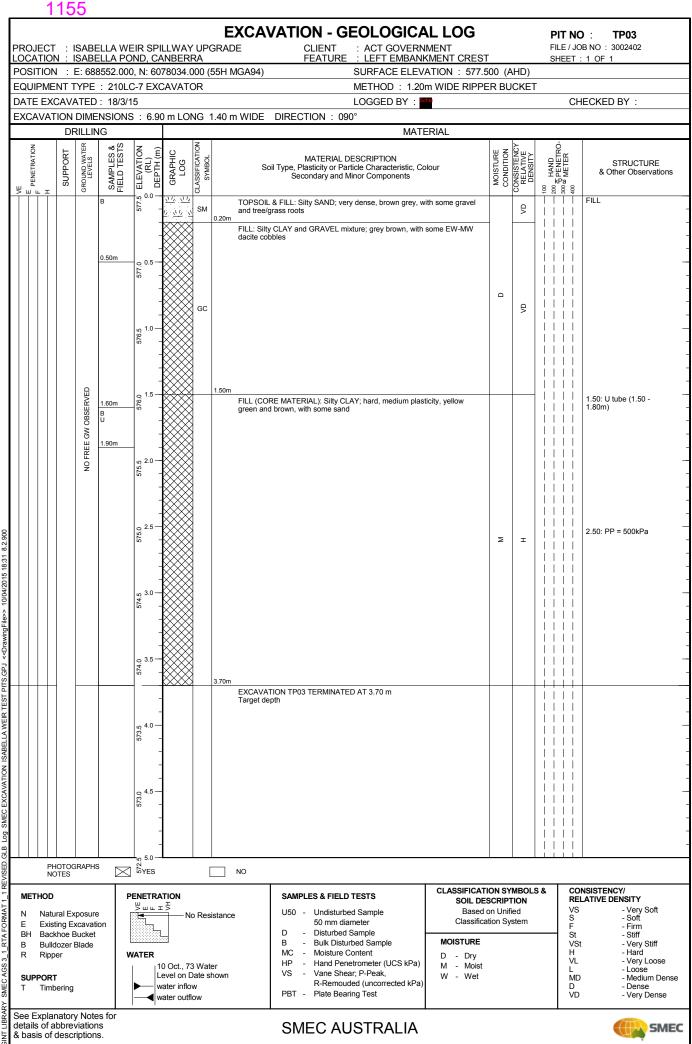




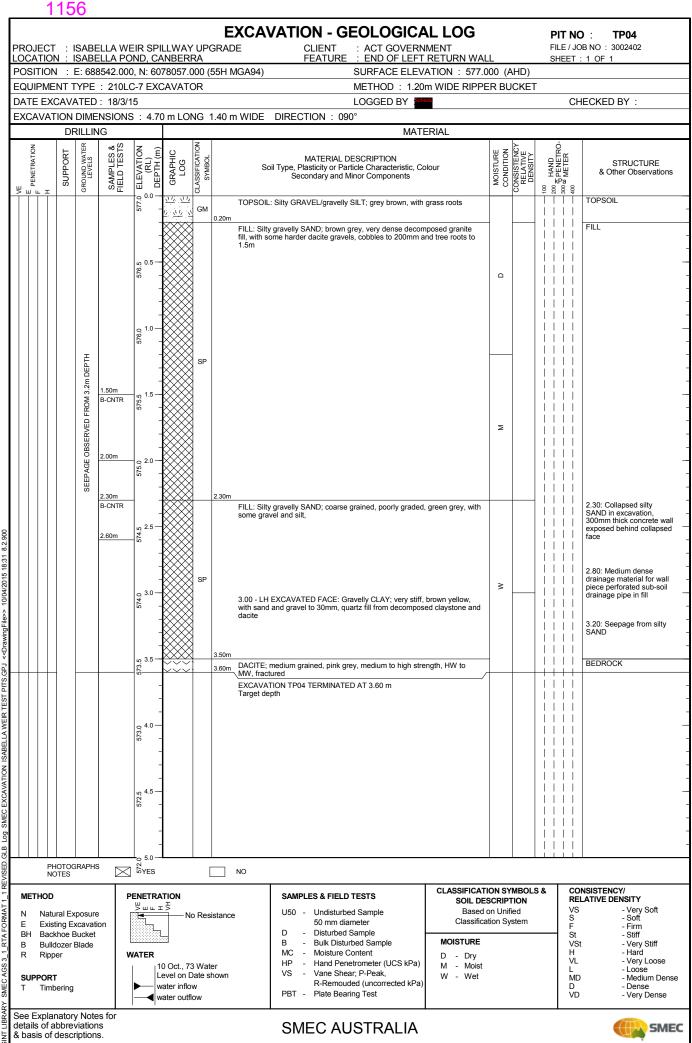
PROJECT MANAGER

ROJECT DIRECTOR

14.0


|                    | FOR INFORMATION ONLY                       |                                                       |                       |  |  |  |  |  |  |  |  |  |  |  |
|--------------------|--------------------------------------------|-------------------------------------------------------|-----------------------|--|--|--|--|--|--|--|--|--|--|--|
|                    | PROJECT TITLE                              | PROJECT TITLE ACT GOVERNMENT<br>ISABELLA WEIR UPGRADE |                       |  |  |  |  |  |  |  |  |  |  |  |
| Municipal Services | GEOTECHNICAL INVESTIGATIONS<br>SECTIONS    |                                                       |                       |  |  |  |  |  |  |  |  |  |  |  |
|                    | SCALE DRAWING STATUS PROJECT / DRAWING No. |                                                       |                       |  |  |  |  |  |  |  |  |  |  |  |
| DATE               | AS SHOWN                                   | SKETCH                                                | 3002402-00-300-2201 B |  |  |  |  |  |  |  |  |  |  |  |

APPROVED

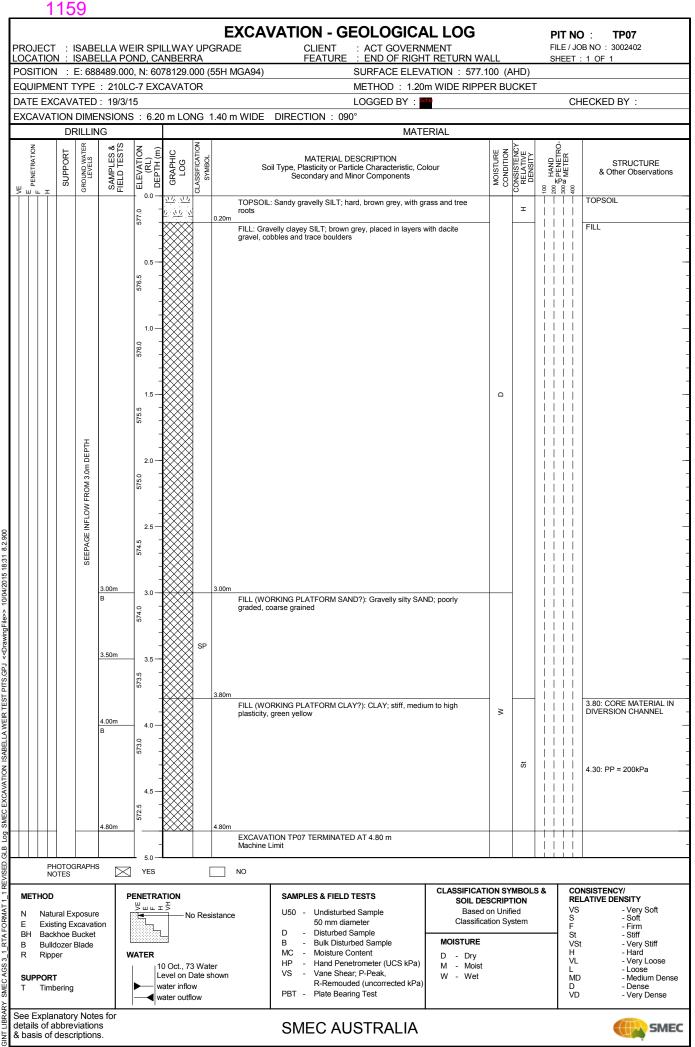

#### APPENDIX 3.04: SMEC TEST PIT LOGS, SKETCHES AND PHOTOS

| _                                      |                   | 1                        | 115                                             | 3                             |                          |                                                                                             |                              |                          |                                                  |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     |                                                                                                                                                             |
|----------------------------------------|-------------------|--------------------------|-------------------------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|-----------------|-------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                   |                          |                                                 |                               | ELLA WE                  |                                                                                             |                              |                          |                                                  | VATION - G                                         | : ACT GOVERN                                                                                                            | IMENT                                                                                             | ENT                   |                                    | F               |             | JOE                 | : <b>TP01</b><br>3 NO : 3002402<br>1 OF 1                                                                                                                   |
| E<br>D                                 | QU<br>ATI         | IPMI<br>E EX             | ENT<br>(CAV                                     | TYPE<br>ATED                  | : 210L0<br>: 18/3/1      | C-7 EX0                                                                                     | CAVAT                        | OR                       | 55H MGA94)                                       | DIRECTION : 09                                     | SURFACE ELEV<br>METHOD : 1.20<br>LOGGED BY :                                                                            |                                                                                                   |                       | ,                                  |                 | (           | CHE                 | ECKED BY :                                                                                                                                                  |
|                                        | DRILLING MATERIAL |                          |                                                 |                               |                          |                                                                                             |                              |                          |                                                  |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     |                                                                                                                                                             |
| ΛE                                     | E<br>DENETRATION  | F TENETRATION<br>H       | SUPPORT                                         | GROUND WATER<br>LEVELS        | SAMPLES &<br>FIELD TESTS | ELEVATION<br>(RL)<br>DEPTH (m)                                                              | GRAPHIC<br>LOG               | CLASSIFICATION<br>SYMBOL | So                                               | oil Type, Plasticity or Pa                         | DESCRIPTION<br>rticle Characteristic, Co<br>Ainor Components                                                            | blour                                                                                             | MOISTURE<br>CONDITION | CONSISTENCY<br>RELATIVE<br>DENSITY | 100<br>200 HAND | 300 & METER | 400                 | STRUCTURE<br>& Other Observations                                                                                                                           |
|                                        | Ī                 | ĪĪ                       |                                                 |                               |                          | - 0.0                                                                                       | <u> 11. 11.</u><br>11. 11. 1 |                          | TOPSOIL                                          | .: Sandy SILT; hard, gre                           | y brown                                                                                                                 |                                                                                                   |                       | т                                  |                 |             | Ì                   | TOPSOIL                                                                                                                                                     |
|                                        |                   |                          |                                                 |                               |                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                              |                          | 0.20m<br>FILL: San<br>0.70m                      | idy silty CLAY and GRA                             | VEL mix; very dense, y                                                                                                  | ellow brown                                                                                       | Ω                     | Q                                  |                 |             | -<br>   <br>   <br> | FILL .                                                                                                                                                      |
|                                        |                   |                          |                                                 | NO FREE GW OBSERVED           |                          | -<br>-<br>-<br>0.1.0<br>-<br>-<br>-<br>-                                                    |                              |                          | <sub>0.80m</sub> Bitumen s                       | seal and road pavement<br>ty CLAY; hard, low plast |                                                                                                                         | ey with some iron                                                                                 |                       | QN                                 |                 |             |                     | ROAD SURFACE                                                                                                                                                |
|                                        |                   |                          |                                                 | NO FRE                        |                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                              |                          | 1.70m                                            | medium grained, mottle                             | d vellow and drove EL                                                                                                   | trenath EW                                                                                        | Σ                     | I                                  |                 |             |                     | -<br>-<br>BEDROCK                                                                                                                                           |
|                                        |                   |                          |                                                 |                               |                          | -                                                                                           |                              |                          | DACITE; I                                        | medium grained, motue                              | b yellow and grey, EL S                                                                                                 | trength, Evv                                                                                      |                       |                                    |                 |             |                     | -                                                                                                                                                           |
|                                        |                   |                          |                                                 |                               |                          | - 2.0<br>- 2109<br>- 229<br>                                                                |                              |                          | 2.00m<br>DACITE; pink grey, VL to L strength, HW |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     | -                                                                                                                                                           |
| _                                      | +                 |                          |                                                 |                               |                          |                                                                                             |                              |                          |                                                  | TION TP01 TERMINATE                                | ED AT 2.40 m                                                                                                            |                                                                                                   |                       |                                    | -               |             | i                   |                                                                                                                                                             |
| 4/2015 18:30 8.2.900                   |                   |                          |                                                 |                               |                          | <u>دي 2.5 –</u><br><u>دي 2.5 –</u><br>-<br>-<br>-                                           |                              |                          | Target de                                        | pm                                                 |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     |                                                                                                                                                             |
| < <drawingfile>&gt; 10/0</drawingfile> |                   |                          |                                                 |                               |                          |                                                                                             |                              |                          |                                                  |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     | -<br>-<br>-                                                                                                                                                 |
| WEIR TEST PITS.GPJ                     |                   |                          |                                                 |                               |                          | 574                                                                                         |                              |                          |                                                  |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     | -<br>-<br>-                                                                                                                                                 |
| CAVATION ISABELLA                      |                   |                          |                                                 |                               |                          | 0. 4.0 —<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                  |                              |                          |                                                  |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     | -<br>-<br>-<br>-                                                                                                                                            |
| .GLB Log SMEC EX(                      |                   |                          |                                                 |                               |                          |                                                                                             |                              |                          |                                                  |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     |                                                                                                                                                             |
| EVISED                                 |                   |                          | HOTO                                            | GRAPHS                        | š 🖂                      | m.                                                                                          |                              | [                        | NO                                               |                                                    |                                                                                                                         |                                                                                                   |                       |                                    |                 |             |                     |                                                                                                                                                             |
| :C AGS 3_1_RTA FORMAT 1                | N<br>E<br>BH<br>R | Exi<br>Bac<br>Bul<br>Rip | tural Ex<br>sting E<br>ckhoe I<br>Idozer<br>per |                               | on                       | ► u                                                                                         | . <del>.</del> .             | 3 Wate<br>Date sl        |                                                  | MC - Moisture (<br>HP - Hand Pen<br>VS - Vane She  | ed Sample<br>ameter<br>Sample<br>rbed Sample<br>Content<br>letrometer (UCS kPa)<br>ar; P-Peak,<br>ded (uncorrected kPa) | CLASSIFICATI<br>SOIL DES<br>Based o<br>Classifical<br>MOISTURE<br>D - Dry<br>M - Moist<br>W - Wet | CRIPT<br>on Unif      | <b>FION</b><br>ied                 | 5&              |             |                     | ISISTENCY/<br>ATIVE DENSITY<br>- Very Soft<br>- Soft<br>- Firm<br>- Stiff<br>- Hard<br>- Very Loose<br>- Loose<br>- Medium Dense<br>- Dense<br>- Very Dense |
| SINT LIBRA                             | etail             | ls of                    | abbre                                           | y Note<br>viation<br>ription: | S                        |                                                                                             |                              |                          |                                                  | SMEC AL                                            | JSTRALIA                                                                                                                |                                                                                                   |                       |                                    |                 |             |                     | SMEC                                                                                                                                                        |

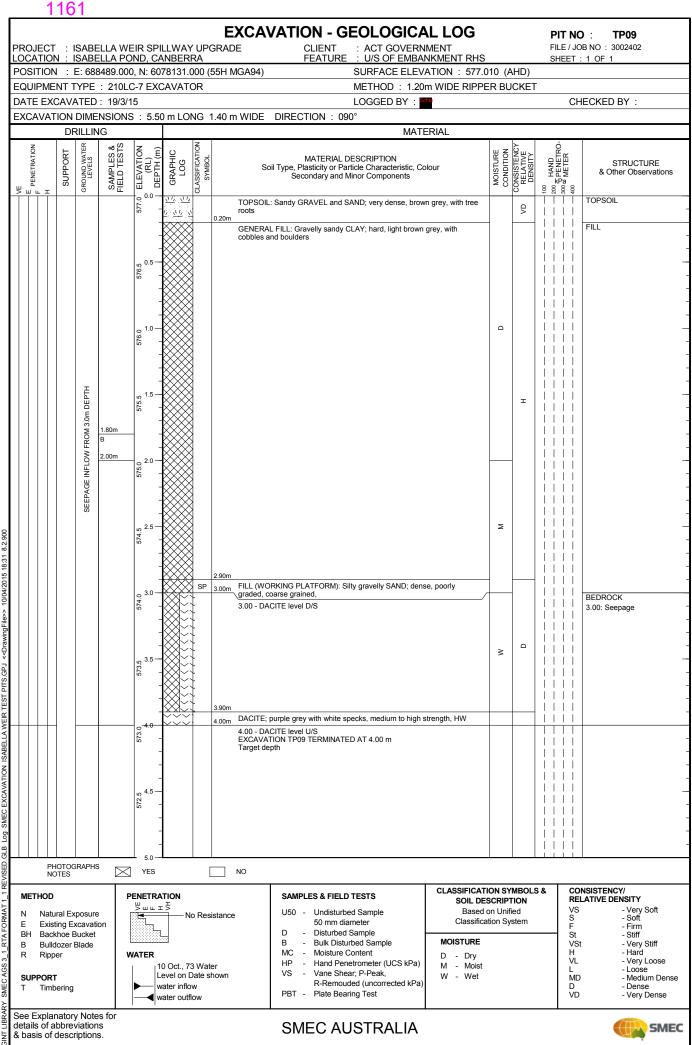
| _                                                                                                                                         |                                                                                                                                                                                                                                                        |        | 1'         | 15    | 4                             |          |                                   |                                       |                          |                         |                                    |                                                                                                                     |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-------|-------------------------------|----------|-----------------------------------|---------------------------------------|--------------------------|-------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|-------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|
| ſ                                                                                                                                         |                                                                                                                                                                                                                                                        |        | -          |       |                               |          |                                   |                                       |                          | E                       | XCA                                | V                                                                                                                   | ATION - G              | EOLOGICA                                                                        | AL LOG                                                                             |                                                             |       | F |                                                                                                                                                                                                                                                                                                                                             | NO      | : TP02                            |
|                                                                                                                                           |                                                                                                                                                                                                                                                        |        |            |       |                               |          | EIR SPI                           |                                       |                          | GRAD                    | лЕ<br>                             |                                                                                                                     | CLIENT<br>FEATURE      | : ACT GOVERN<br>: U/S LEFT EMB                                                  |                                                                                    |                                                             |       | F | FILE / 、                                                                                                                                                                                                                                                                                                                                    | JOE     | 3 NO:3002402<br>1 OF 1            |
|                                                                                                                                           | POS                                                                                                                                                                                                                                                    | SITIC  | ON         | : E   | E: 688                        | 8560.000 | 0, N: 60                          | 78033.                                | 000 (                    | 55H N                   | /GA94)                             |                                                                                                                     |                        | SURFACE ELEV                                                                    | 'ATION : 577.4                                                                     |                                                             | ,     |   | _                                                                                                                                                                                                                                                                                                                                           |         |                                   |
|                                                                                                                                           |                                                                                                                                                                                                                                                        |        |            |       |                               | : 210L0  | C-7 EXC<br>15                     | CAVAI                                 | SR                       |                         |                                    |                                                                                                                     |                        | METHOD : 1.20                                                                   | M WIDE RIPPE                                                                       | R BU                                                        | JCKEI | Г | (                                                                                                                                                                                                                                                                                                                                           | CHE     | ECKED BY :                        |
| - H                                                                                                                                       |                                                                                                                                                                                                                                                        |        |            |       |                               |          |                                   | 0 m LO                                | NG                       | 1.40 n                  | n WIDE                             | <u> </u>                                                                                                            | DIRECTION : 09         |                                                                                 | ·                                                                                  |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             | <u></u> |                                   |
| F                                                                                                                                         | _                                                                                                                                                                                                                                                      | _      | _          | DF    | RILLIN                        |          |                                   |                                       |                          |                         |                                    | _                                                                                                                   |                        | MATE                                                                            | ERIAL                                                                              |                                                             | ,     |   |                                                                                                                                                                                                                                                                                                                                             |         |                                   |
|                                                                                                                                           | ve<br>F PENETRATION<br>H<br>SUPPORT<br>SUPPORT<br>GROUND WATER<br>LEVELS<br>SAMPLES &<br>FIELD TESTS<br>FIELD TESTS<br>FIELD TESTS<br>CLOSTICATION<br>CLOSTICATION<br>SYMBOL                                                                           |        |            |       |                               |          |                                   |                                       | CLASSIFICATION<br>SYMBOL |                         | Sc<br>                             | Soil T                                                                                                              | Type, Plasticity or Pa | DESCRIPTION<br>rticle Characteristic, Co<br>Minor Components                    | olour                                                                              | MOISTURE<br>CONDITION<br>CONSISTENCY<br>RELATIVE<br>DENSITY |       |   | 200 B PENETRO-<br>300 B METER                                                                                                                                                                                                                                                                                                               |         | STRUCTURE<br>& Other Observations |
|                                                                                                                                           |                                                                                                                                                                                                                                                        |        |            |       | NO FREE GW OBSERVED           |          |                                   |                                       | GM                       | 0.20m                   | FILL: Silty                        | ilty sa                                                                                                             |                        | T; hard, grey, with tree a<br>prown grey to light brown<br>ity, dark grey brown | -                                                                                  | DtoM                                                        | Т     |   |                                                                                                                                                                                                                                                                                                                                             |         | TOPSOIL                           |
| gFile>> 10/04/2015 18:31 8.2.900                                                                                                          |                                                                                                                                                                                                                                                        |        |            |       |                               |          | 574.5<br>574.5<br>0.2<br>0.2<br>1 |                                       |                          | 2.60m<br>3.00m<br>3.20m | EW<br>DACITE;<br>EXCAVA            | E; yellow with some grey mottling and white specs, EL strength,<br>E; grey purple with white specs, VL strength, HW |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             | BEDROCK |                                   |
| Jrawing                                                                                                                                   |                                                                                                                                                                                                                                                        |        |            |       | 1                             |          | 0 -                               |                                       |                          |                         | Target de                          |                                                                                                                     |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         | -                                 |
| Q> [,                                                                                                                                     |                                                                                                                                                                                                                                                        |        |            |       |                               |          | 24.0                              | -                                     |                          |                         |                                    |                                                                                                                     |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         | -                                 |
| INT LIBRARY SMEC AGS 3_1_RTA FORMAT 1_1 REVISED.GLB_L0g_SMEC EXCAVATION ISABELLA WEIR TEST PITS.GPJ_< <drawingfile>&gt; 10/</drawingfile> |                                                                                                                                                                                                                                                        |        |            |       |                               |          |                                   |                                       |                          |                         |                                    |                                                                                                                     |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         |                                   |
| CEXC                                                                                                                                      |                                                                                                                                                                                                                                                        |        |            | <br>  | 1                             |          | -                                 | -                                     |                          |                         |                                    |                                                                                                                     |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         | -                                 |
| GLB Log SME                                                                                                                               |                                                                                                                                                                                                                                                        |        |            |       |                               |          |                                   |                                       |                          |                         |                                    |                                                                                                                     |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         | -<br>-<br>-                       |
| :VISEL                                                                                                                                    |                                                                                                                                                                                                                                                        |        | PHC<br>NOT |       | SRAPHS                        |          | ] YES                             |                                       | [                        |                         | NO                                 |                                                                                                                     |                        |                                                                                 |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         |                                   |
| RY SMEC AGS 3_1_RTA FORMAT 1_1 RE                                                                                                         | METHOD       PENETRATION         N       Natural Exposure         E       Existing Excavation         BH       Backhoe Bucket         B       Bulldozer Blade         R       Ripper         SUPPORT       10 Oct., 73 Water         T       Timbering |        |            |       |                               |          |                                   | 0 Oct., 7<br>evel on I<br>vater inflo | '3 Wate<br>Date sl       | ter                     | e U50 - Undisturbed Sample Based o |                                                                                                                     |                        |                                                                                 | DIL DESCRIPTION<br>Based on Unified<br>assification System<br>TURE<br>Dry<br>Moist |                                                             |       |   | CONSISTENCY/         RELATIVE DENSITY         VS       - Very Soft         S       - Soft         F       - Firm         St       - Stiff         VSt       - Very Stiff         H       - Hard         VL       - Very Loose         L       - Loose         MD       - Medium Dense         D       - Dense         VD       - Very Dense |         |                                   |
| INT LIBRA                                                                                                                                 | detai                                                                                                                                                                                                                                                  | ils of | f ab       | bbrev | y Note<br>viation<br>riptions | าร       |                                   |                                       |                          |                         |                                    |                                                                                                                     | SMEC AL                | JSTRALIA                                                                        |                                                                                    |                                                             |       |   |                                                                                                                                                                                                                                                                                                                                             |         | SMEC                              |



File: 3002402 TP03 Page 1 OF 1



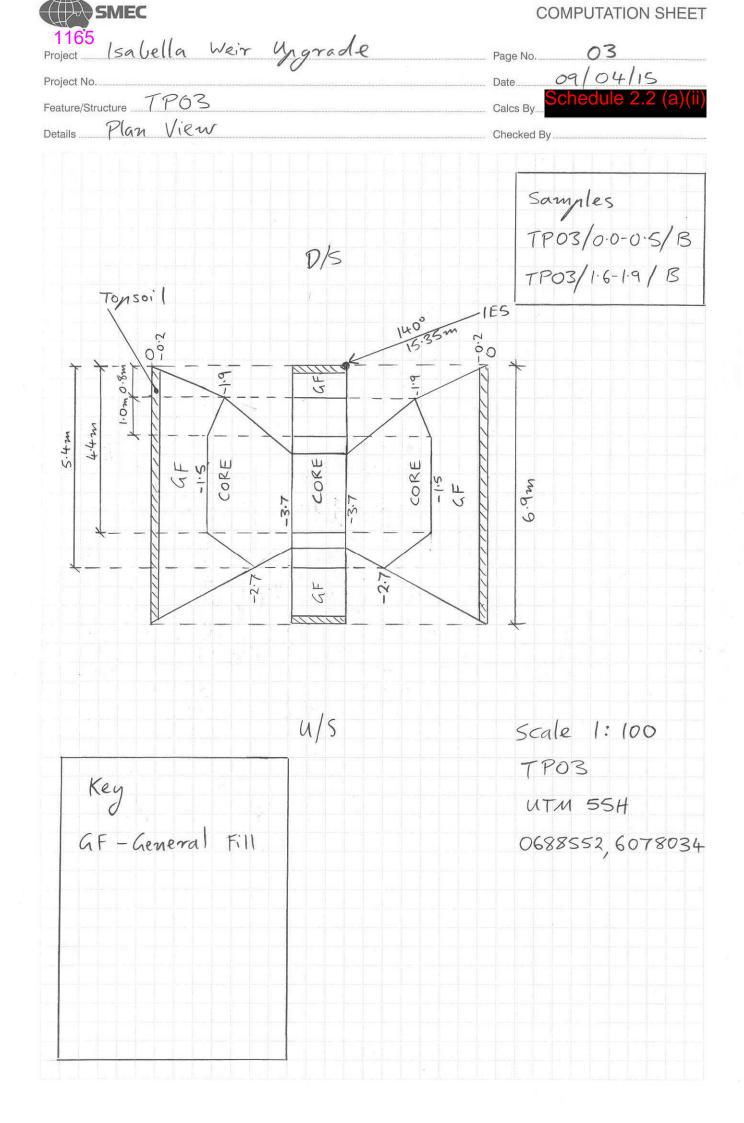

| ſ                                                                                                                                      |                                                                                                                                                                                                          | -    | 15      | 1                                |                                  |                   |                                                    |                                                 |                          | EXCA                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VATION - G                                                               | EOLOGICA               | AL LOG       |                       |                                    | PIT                                                                                                                                                                                                                                                                                                                                                           | NO    | : TP05                            |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------------------------|----------------------------------|-------------------|----------------------------------------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|--------------|-----------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
|                                                                                                                                        |                                                                                                                                                                                                          |      |         |                                  | ELLA W                           |                   |                                                    |                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CLIENT<br>FEATURE                                                        | : ACT GOVERN           | IMENT        | RE                    |                                    | FILE                                                                                                                                                                                                                                                                                                                                                          | / JOI | B NO : 3002402<br>1 OF 1          |
| - 6                                                                                                                                    |                                                                                                                                                                                                          |      |         |                                  |                                  |                   |                                                    |                                                 |                          | 55H MGA94)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          | SURFACE ELEV           |              |                       | AHD)                               | SHE                                                                                                                                                                                                                                                                                                                                                           |       |                                   |
| -                                                                                                                                      |                                                                                                                                                                                                          |      |         |                                  | : 210L                           |                   | EXC                                                | CAVAT                                           | OR                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | METHOD : 1.20          | m WIDE RIPPI | ER BL                 | JCKET                              | -                                                                                                                                                                                                                                                                                                                                                             |       |                                   |
| - 1-                                                                                                                                   |                                                                                                                                                                                                          |      |         |                                  | : 17/3/                          |                   | 0 -                                                | 0                                               |                          | 1.40 - 14/105                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                        | edu          |                       |                                    |                                                                                                                                                                                                                                                                                                                                                               | CH    | ECKED BY :                        |
| ŀ                                                                                                                                      | EXCA                                                                                                                                                                                                     | VAI  |         |                                  |                                  | S :               | 8.5                                                | ) m LOI                                         | NG <sup>2</sup>          | 1.40 m WIDE                                                                                                                                                                                                                                                                                                                                                                                                                                             | DIRECTION : 09                                                           |                        | ERIAL        |                       |                                    |                                                                                                                                                                                                                                                                                                                                                               |       |                                   |
|                                                                                                                                        | ENETRATION                                                                                                                                                                                               |      | SUPPORT | GROUND WATER                     | SAMPLES &<br>FIELD TESTS         | ELEVATION         | (KL)<br>DEPTH (m)                                  | GRAPHIC<br>LOG                                  | CLASSIFICATION<br>SYMBOL | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oil Type, Plasticity or Pa                                               | ESCRIPTION             |              | AOISTURE<br>CONDITION | CONSISTENCY<br>RELATIVE<br>DENSITY | HAND<br>PENETRO-                                                                                                                                                                                                                                                                                                                                              |       | STRUCTURE<br>& Other Observations |
|                                                                                                                                        | <u>у п</u> .                                                                                                                                                                                             | L I  | 0,      | 8<br>R                           | SE                               | -                 | ם<br>0.0                                           | <u>N. N. N</u> | 5                        | TOPSOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                        |              | 20                    | 8_                                 | kPa                                                                                                                                                                                                                                                                                                                                                           | 400   | TOPSOIL                           |
|                                                                                                                                        |                                                                                                                                                                                                          |      |         |                                  |                                  | 576.5 577.0       | -                                                  |                                                 |                          | 0.30m                                                                                                                                                                                                                                                                                                                                                                                                                                                   | velly silty CLAY; brown ູ                                                | grey, comprising decom | posed dacite | G                     |                                    |                                                                                                                                                                                                                                                                                                                                                               |       | FILL -                            |
|                                                                                                                                        |                                                                                                                                                                                                          |      |         | SEEPAGE OBSERVED FROM 4.0m DEPTH | 1.50m<br>B-U/S &<br>D/S<br>2.50m | .0 575.5 576.0    | -<br>-<br>-<br>2.0<br>-<br>-                       |                                                 |                          | 1.50m<br>FILL (CO)<br>EW grave                                                                                                                                                                                                                                                                                                                                                                                                                          | RE MATERIAL): Silty CLAY; yellow with red mottling, with som<br>and sand |                        |              | M to W                | -                                  |                                                                                                                                                                                                                                                                                                                                                               |       | -                                 |
| GPJ < <drawingfile>&gt; 10/04/2015 18:31 8.2.900</drawingfile>                                                                         |                                                                                                                                                                                                          |      |         | SEEPAG                           |                                  | 574.0 574.5 575.0 | -<br>-<br>3.0<br>-<br>-<br>-                       |                                                 |                          | Silty CLA                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y; becoming sandy, grey                                                  | r yellow to yellow     |              | 2                     | _                                  |                                                                                                                                                                                                                                                                                                                                                               |       | 2.50: PP = 200 to 250kPa -        |
| AVATION ISABELLA WEIR TEST PITS.                                                                                                       |                                                                                                                                                                                                          |      |         |                                  | 4.00m<br>B-CNTR<br>4.50m         | 573.0 573.5       | -                                                  |                                                 |                          | 4.50m                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                        |              | *                     |                                    |                                                                                                                                                                                                                                                                                                                                                               |       | 4.00: Seepage                     |
| ED.GLB Log SMEC EXI                                                                                                                    |                                                                                                                                                                                                          | РН   | 0106    | RAPHS                            |                                  | 572.5             | -<br>-<br>-<br>5.0 —                               |                                                 |                          | Target de                                                                                                                                                                                                                                                                                                                                                                                                                                               | TION TP05 TERMINATE                                                      | LU AT 4.50 M           |              |                       |                                    |                                                                                                                                                                                                                                                                                                                                                               |       |                                   |
| REVISE                                                                                                                                 |                                                                                                                                                                                                          | NC   | TES     | 1 K                              | ° ⊠                              | ļΥ                | ES                                                 |                                                 | [                        | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |                        |              |                       |                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                      |       |                                   |
| GINT LIBRARY SMEC AGS 3_1_RTA FORMAT 1_1 REVISED.GLB Log SMEC EXCAVATION ISABELLA WEIR TEST PITS.GPJ < <dramingfile>&gt;</dramingfile> | METHOD     PENETRATION       N     Natural Exposure       E     Existing Excavation       BH     Backhoe Bucket       B     Bulldozer Blade       R     Ripper       SUPPORT     T       T     Timbering |      |         |                                  |                                  |                   | = ≯<br>N<br>0 Oct., 73<br>evel on E<br>vater inflo | 3 Wat<br>Date s                                 | er                       | SAMPLES & FIELD TESTS     CLASSIFICAT<br>SOIL DE<br>Based<br>Classific       U50     -     Undisturbed Sample<br>50 mm diameter     Based<br>Classific       D     -     Disturbed Sample<br>B     Bulk Disturbed Sample       MC     -     Moisture Content<br>HP     -       HP     -     Hand Penetrometer (UCS kPa)<br>VS     -       VS     -     Vane Shear, P-Peak,<br>R-Remouded (uncorrected kPa)     W       PBT     -     Plate Bearing Test |                                                                          |                        |              | TION<br>fied          | S &                                | CONSISTENCY/<br>RELATIVE DENSITY           VS         - Very S           S         - Soft           F         - Firm           St         - Stiff           VSt         - Very S           H         - Hard           VL         - Very L           L         - Loose           MD         - Mediur           D         - Dense           VD         - Very D |       |                                   |
| GINT LIBRA                                                                                                                             | See E<br>details<br>& basi                                                                                                                                                                               | of a | bbre    | viatior                          | IS                               |                   |                                                    |                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SMEC AL                                                                  | JSTRALIA               |              |                       |                                    |                                                                                                                                                                                                                                                                                                                                                               |       | SMEC                              |


File: 3002402 TP05 Page 1 OF 1

1157

|                                                                | 115                                                            | 8                          |                          |                                                                                                                   |                                  |               |                                          |                                                                               |                                                                                                                   |                                      |          |                                    |                                  |                                                                                                                                                                                                 |                                       |  |
|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
|                                                                |                                                                |                            |                          |                                                                                                                   | LLWAY UF                         |               |                                          | ATION - G                                                                     | EOLOGICA<br>: ACT GOVERN<br>: RIGHT EMBAN                                                                         | IMENT                                |          |                                    | FILE                             |                                                                                                                                                                                                 | : <b>TP06</b><br>NO : 3002402<br>OF 1 |  |
| POSITIO                                                        | DN : I                                                         | E: 688                     | 8496.00                  | 0, N: 60                                                                                                          | 78109.000                        | (55H MC       | GA94)                                    |                                                                               | SURFACE ELEV                                                                                                      | ATION : 577.                         |          | ,                                  | -                                |                                                                                                                                                                                                 | <u> </u>                              |  |
|                                                                |                                                                |                            |                          |                                                                                                                   | CAVATOR                          |               |                                          |                                                                               | METHOD : 1.20                                                                                                     | m WIDE RIPP                          | ER BL    | JCKET                              |                                  | <u></u>                                                                                                                                                                                         |                                       |  |
| DATE EX                                                        |                                                                |                            |                          |                                                                                                                   | 50 m LON(                        | ੇ 1.40 m      | י WIDE                                   | DIRECTION : 0                                                                 | LOGGED BY :<br>90°                                                                                                |                                      |          |                                    |                                  |                                                                                                                                                                                                 | CKED BY :                             |  |
|                                                                |                                                                | RILLIN                     | ١G                       |                                                                                                                   |                                  |               |                                          |                                                                               |                                                                                                                   | ERIAL                                |          |                                    |                                  |                                                                                                                                                                                                 |                                       |  |
| NOI                                                            | RT ST                                                          | ATER                       | S &<br>S TS              | NO (E                                                                                                             | U LION                           |               |                                          |                                                                               |                                                                                                                   |                                      | ₩S       | ×ñ⊼                                | RO-                              |                                                                                                                                                                                                 |                                       |  |
| VE<br>E PENETRATION<br>H                                       | SUPPORT                                                        | GROUND WATER<br>LEVELS     | SAMPLES &<br>FIELD TESTS | ELEVATION<br>(RL)<br>DEPTH (m)                                                                                    | GRAPHIC<br>LOG<br>CLASSIFICATION | SYMBUL        | Soil                                     | I Type, Plasticity or Pa                                                      | ESCRIPTION<br>ticle Characteristic, Co<br>linor Components                                                        | blour                                | MOISTURE | CONSISTENCY<br>RELATIVE<br>DENSITY | 100<br>200 HAND<br>300 & METERO- | 00                                                                                                                                                                                              | STRUCTURE<br>& Other Observations     |  |
|                                                                |                                                                |                            |                          | 0.0                                                                                                               | <u>v. v. v</u>                   |               | TOPSOIL:                                 | Silt, sand and gravel m                                                       | ix, grey                                                                                                          |                                      |          |                                    |                                  |                                                                                                                                                                                                 | OPSOIL                                |  |
|                                                                |                                                                |                            | 1.00m                    |                                                                                                                   |                                  | F             | ayers, laye                              | R & D/S: Silty gravelly C<br>er discontinues at 1.0m<br>. U/S OF CLAY CORE:   | depth                                                                                                             |                                      |          |                                    |                                  |                                                                                                                                                                                                 | ill L                                 |  |
|                                                                |                                                                | JBSERVED                   | 1.40m                    | - 1.0                                                                                                             |                                  | 1<br> k<br> n | 1.00 - FILL<br>low to med<br>moist to we | . (CORE MATERIAL) C<br>lium plasticity, grey gre<br>et, layer discontinues at | NTR & D/S: Silty sandy<br>en and yellow, with son<br>1.4m depth                                                   | CLAY; very stiff,<br>ne fine gravel, |          |                                    |                                  |                                                                                                                                                                                                 | .40: PP = 300 - 400kPa<br>CNTR & D/S) |  |
|                                                                |                                                                | NO FREE GW OBSERVED        | 1.60m                    | 1.5 —<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-              |                                  |               | 2.00 - FILL                              | . U/S OF CLAY CORE:<br>silt and 50-200mm cobi                                 | Silty gravelly SAND; co                                                                                           | arse grained,                        |          | -                                  |                                  |                                                                                                                                                                                                 | CNTR & D/S) -                         |  |
|                                                                |                                                                |                            |                          |                                                                                                                   |                                  | g             | grey, with s                             | silt and 50-200mm cobi                                                        | les (typical), trace boui                                                                                         | der to 500mm                         | M to W   |                                    |                                  |                                                                                                                                                                                                 |                                       |  |
|                                                                |                                                                |                            |                          | -<br>- 214.5<br>- 0.6<br>-                                                                                        |                                  |               |                                          |                                                                               |                                                                                                                   |                                      | Mtc      |                                    |                                  |                                                                                                                                                                                                 |                                       |  |
| b                                                              | _                                                              | $\vdash$                   |                          | 574.0                                                                                                             |                                  |               | EXCAVATI<br>Target dep                   | ION TP06 TERMINATE                                                            | D AT 3.30 m                                                                                                       |                                      |          | $\left  \right $                   |                                  |                                                                                                                                                                                                 |                                       |  |
| ,                                                              |                                                                |                            |                          | 3.5                                                                                                               |                                  |               | laiyet dep                               | <b>J</b> U1                                                                   |                                                                                                                   |                                      |          |                                    |                                  |                                                                                                                                                                                                 | -                                     |  |
|                                                                |                                                                |                            |                          | 573.5                                                                                                             |                                  |               |                                          |                                                                               |                                                                                                                   |                                      |          |                                    |                                  |                                                                                                                                                                                                 |                                       |  |
|                                                                |                                                                |                            |                          | 4.0 -                                                                                                             |                                  |               |                                          |                                                                               |                                                                                                                   |                                      |          |                                    |                                  |                                                                                                                                                                                                 | -                                     |  |
|                                                                |                                                                |                            |                          | 573.0                                                                                                             |                                  |               |                                          |                                                                               |                                                                                                                   |                                      |          |                                    |                                  |                                                                                                                                                                                                 |                                       |  |
|                                                                |                                                                |                            |                          | 4.5                                                                                                               |                                  |               |                                          |                                                                               |                                                                                                                   |                                      |          |                                    |                                  |                                                                                                                                                                                                 | -                                     |  |
|                                                                |                                                                |                            |                          | 572.5                                                                                                             |                                  |               |                                          |                                                                               |                                                                                                                   |                                      |          |                                    |                                  |                                                                                                                                                                                                 |                                       |  |
| F                                                              | PHOTOG<br>NOTES                                                | RAPH                       | s 🖂                      | 5.0<br>] YES                                                                                                      | <b></b> .                        | N             | 10                                       |                                                                               |                                                                                                                   |                                      |          | I .                                |                                  |                                                                                                                                                                                                 |                                       |  |
| METHOD<br>N Nai<br>E Exi<br>BH Baa<br>B Bul<br>R Rip<br>SUPPOR | D<br>atural Ex<br>sisting Ex<br>ackhoe E<br>Illdozer I<br>pper | xcavati<br>Bucket<br>Blade | e<br>ion                 | PENETRATION       Sure       No Resistance       WATER       Level on Date shown water inflow       water outflow |                                  |               |                                          | MC - Moisture C<br>HP - Hand Pen<br>VS - Vane She                             | bed Sample<br>liameter<br>d Sample<br>turbed Sample<br>Content<br>enetrometer (UCS kPa)<br>uded (uncorrected kPa) |                                      |          | <b>TION</b><br>fied                |                                  | & CONSISTENCY/<br>RELATIVE DENSITY<br>VS - Very Soft<br>F - Firm<br>St - Stiff<br>VSt - Very Stiff<br>H - Hard<br>VL - Very Loose<br>L - Loose<br>MD - Medium D,<br>D - Dense<br>VD - Very Dens |                                       |  |
| See Expla<br>details of<br>& basis of                          | abbre                                                          | viation                    | าร                       |                                                                                                                   |                                  |               |                                          | SMEC AL                                                                       | ISTRALIA                                                                                                          |                                      |          |                                    |                                  |                                                                                                                                                                                                 |                                       |  |



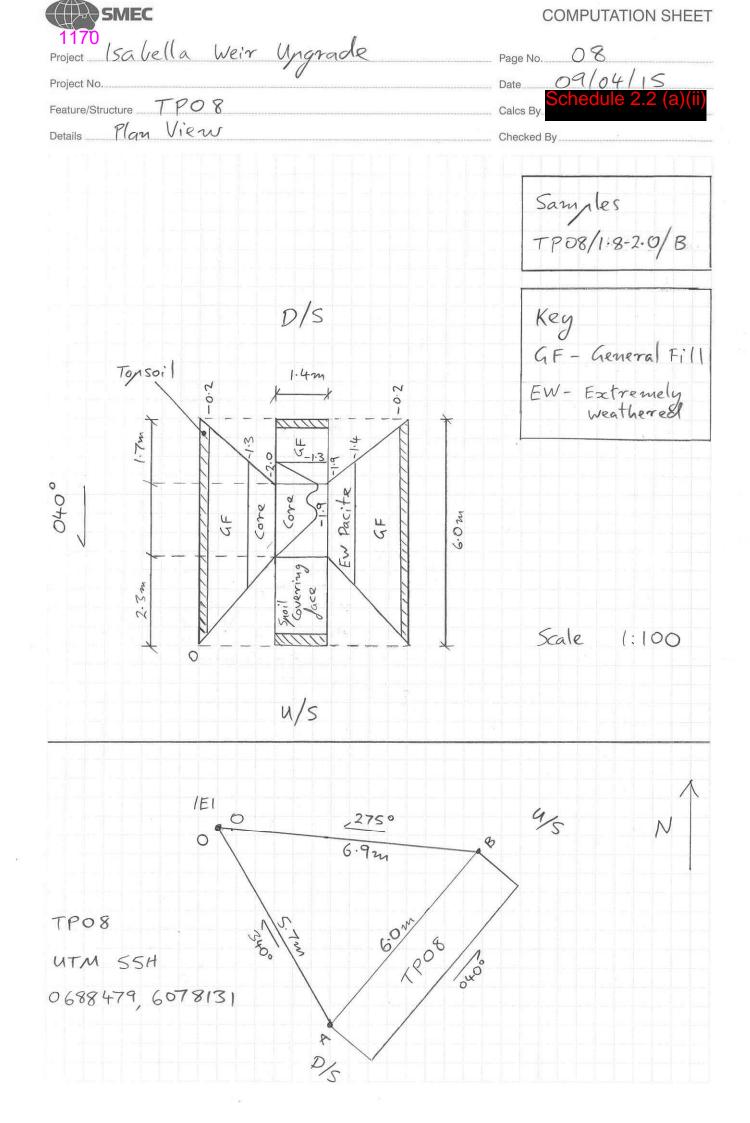

|                                                             | <u>116</u>                                            | <u> </u>                   |                          |                                |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|-------------------------------------------------------------|-------------------------------------------------------|----------------------------|--------------------------|--------------------------------|------------------|--------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|-----------------------------------|--------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJEC<br>LOCATIO                                           | ст :<br>ОN :                                          | ISABE<br>ISABE             | ELLA PC                  | OND, CA                        | NBER             | RA                       | GRADE                    | /ATION - G                                         | EOLOGICA<br>: ACT GOVERN<br>: RIGHT HAND                                                                                 | IMENT                                                     | ′ COR            | E                                 | FIL                                  |                    | D: <b>TP08</b><br>B NO : 3002402<br>1 OF 1                                                                                                                                         |
|                                                             |                                                       |                            |                          |                                |                  |                          | ih Mga94)                |                                                    | SURFACE ELEV                                                                                                             |                                                           |                  | ,                                 |                                      |                    |                                                                                                                                                                                    |
| EQUIPM                                                      |                                                       |                            |                          |                                | CAVAI            | OR                       |                          |                                                    | METHOD : 1.20<br>LOGGED BY :                                                                                             | m WIDE RIPPI                                              | ER BL            | JCKEI                             | -                                    | СН                 | ECKED BY :                                                                                                                                                                         |
|                                                             |                                                       |                            |                          |                                | 0 m LO           | NG 1                     | .40 m WIDE               | DIRECTION : 09                                     |                                                                                                                          |                                                           |                  |                                   |                                      | 01                 | ECRED DI .                                                                                                                                                                         |
|                                                             |                                                       | RILLIN                     |                          |                                |                  |                          |                          |                                                    |                                                                                                                          | ERIAL                                                     |                  |                                   |                                      |                    |                                                                                                                                                                                    |
| NOI                                                         | RΤ                                                    | TER                        | s &<br>STS               | NO E                           | υ                | LION .                   |                          |                                                    |                                                                                                                          |                                                           | шZ               | ХпК                               | -RO-                                 | ~                  |                                                                                                                                                                                    |
| VE<br>E PENETRATION<br>H                                    | SUPPORT                                               | GROUND WATER<br>LEVELS     | SAMPLES &<br>FIELD TESTS | ELEVATION<br>(RL)<br>DEPTH (m) | GRAPHIC<br>LOG   | CLASSIFICATION<br>SYMBOL | So                       | il Type, Plasticity or Pa                          | DESCRIPTION<br>Irticle Characteristic, Co<br>Minor Components                                                            | blour                                                     | MOISTURE         | CONSISTENC<br>RELATIVE<br>DENSITY | 100<br>200 유 HAND<br>200 유 PE NETRO- | 300 & METER<br>400 | STRUCTURE<br>& Other Observations                                                                                                                                                  |
|                                                             |                                                       |                            |                          | - 0.0                          | <u> 112 112</u>  |                          | TOPSOIL<br>0.20m         | : Sandy gravelly SILT; g                           | grey brown                                                                                                               |                                                           | ٥                |                                   |                                      |                    | TOPSOIL                                                                                                                                                                            |
|                                                             | OBSERVED                                              | FREE GW OBSERVED           |                          |                                |                  |                          | FILL: San                | dy silty CLAY; hard, bro<br>epth and RHS discontir | wn grey, with gravel, LH<br>ues at 1.4m depth                                                                            | HS discontinues                                           | D to M           | т                                 |                                      |                    | FILL                                                                                                                                                                               |
|                                                             |                                                       | NO FREE GV                 |                          | 1.0 —<br>                      |                  |                          | yellow, wit<br>1.40 - DA | th some sand and fine                              | Ity CLAY; stiff to very sti<br>gravel<br>d, brown and white spe                                                          |                                                           | _                | to VSt                            |                                      |                    | BEDROCK                                                                                                                                                                            |
|                                                             |                                                       |                            | 1.80m<br>B<br>2.00m      | 576.0                          |                  | *****                    | 2.00m                    |                                                    |                                                                                                                          |                                                           | ⊻                | St to \                           |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          |                                |                  |                          |                          | TION TP08 TERMINATI                                | ED AT 2.00 m                                                                                                             |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 575.5                          |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 2.5                            |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 575.0                          |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 3.0                            |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | -                              |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
| 5                                                           |                                                       |                            |                          | 574.5                          | -                |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 3.5                            |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   | ii<br>II                             |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 574.0                          |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 4.0                            |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
| 5                                                           |                                                       |                            |                          | 573.5                          |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 4.5                            |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | - 0.8                          |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
|                                                             |                                                       |                            |                          | 573.0                          |                  |                          |                          |                                                    |                                                                                                                          |                                                           |                  |                                   |                                      |                    |                                                                                                                                                                                    |
| F                                                           | PHOTO<br>NOTES                                        | GRAPHS                     | , X                      | ⊥ 5.0<br>] YES                 | ļ                |                          | NO                       |                                                    |                                                                                                                          |                                                           | 1                | <u> </u>                          |                                      | 1                  | I                                                                                                                                                                                  |
| METHOI<br>N Na<br>E Exi<br>BH Ba<br>B Bu<br>R Rip<br>SUPPOF | D<br>atural Existing E<br>ackhoe I<br>Ildozer<br>oper | xcavati<br>Bucket<br>Blade | e<br>on                  |                                | . <del>.</del> . | Date sh<br>w             | ۲                        | MC - Moisture<br>HP - Hand Per<br>VS - Vane She    | ed Sample<br>ameter<br>Sample<br>Urbed Sample<br>Content<br>tetrometer (UCS kPa)<br>ar; P-Peak,<br>ded (uncorrected kPa) | Classifica<br>MOISTURE<br>D - Dry<br>M - Moist<br>W - Wet | SCRIP<br>on Unit | TION<br>fied                      | S &                                  |                    | NSISTENCY/<br>_ATIVE DENSITY<br>- Very Soft<br>- Soft<br>- Firm<br>- Stiff<br>- Very Stiff<br>- Very Stiff<br>- Very Loose<br>- Loose<br>- Medium Dense<br>- Dense<br>- Very Dense |
| See Expl<br>details of<br>& basis o                         | abbre                                                 | viation                    | S                        |                                |                  |                          |                          | SMEC AL                                            | JSTRALIA                                                                                                                 |                                                           |                  |                                   | I                                    |                    |                                                                                                                                                                                    |

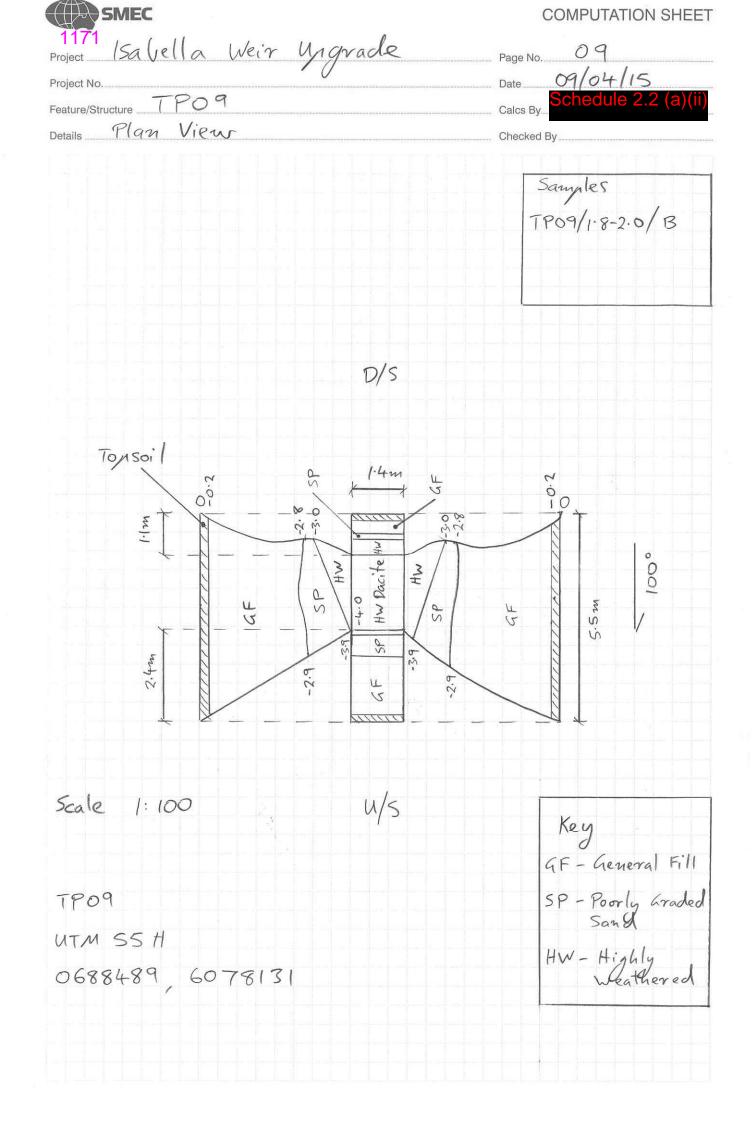


|                        | 1                                                                                                                      | 16      | 2                      |                          |                                |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          |     |
|------------------------|------------------------------------------------------------------------------------------------------------------------|---------|------------------------|--------------------------|--------------------------------|-------------------------------------|---------------------------------------------|--------------------|------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|-----------------------------|----------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|-----|
|                        |                                                                                                                        |         |                        |                          |                                |                                     |                                             |                    |                                                                              |                                                          | LOGICA             |                             |          |                                    |                                                                                                                                                     |             |                                                                          |     |
| LOC                    | ATIO                                                                                                                   | N : I   | SABE                   | LLA PC                   | ND, CA                         | NBER                                | RA                                          | GRADE              |                                                                              | EATURE :                                                 |                    | EMBANKME                    |          |                                    |                                                                                                                                                     |             | B NO: 3002402<br>1 OF 1                                                  |     |
| -                      |                                                                                                                        |         |                        | 477.000<br>: 210L0       | -                              |                                     |                                             | 55H MGA94)         |                                                                              |                                                          |                    | ATION : 577.<br>m WIDE RIPP |          | ,                                  |                                                                                                                                                     |             |                                                                          |     |
| DAT                    | EEX                                                                                                                    | CAVA    | TED                    | : 19/3/1                 | 5                              |                                     |                                             |                    |                                                                              |                                                          | GGED BY:           | cher                        |          |                                    |                                                                                                                                                     | СН          | ECKED BY :                                                               |     |
| EXC                    | AVAT                                                                                                                   |         |                        | NSIONS<br>G              | 5 : 1.40                       | ) m Wll                             | DE                                          | DIRECTION          | : 090°                                                                       |                                                          | MATI               | ERIAL                       |          |                                    |                                                                                                                                                     |             |                                                                          |     |
| Ģ                      | N<br>O                                                                                                                 |         |                        | -                        | NO Ê                           | U                                   | LION                                        |                    |                                                                              |                                                          |                    |                             | ₩Z       | Υ <sup>μ</sup> Υ                   | LRO-                                                                                                                                                | r           |                                                                          |     |
| E VE                   | F PENEIRALION<br>H                                                                                                     | SUPPORT | GROUND WATER<br>LEVELS | SAMPLES &<br>FIELD TESTS | ELEVATION<br>(RL)<br>DEPTH (m) | GRAPHIC<br>LOG                      | CLASSIFICATION<br>SYMBOL                    | So                 | oil Type, Plas                                                               | ATERIAL DESC<br>ticity or Particle<br>idary and Minor    | Characteristic, Co | blour                       | MOISTURE | CONSISTENCY<br>RELATIVE<br>DENSITY | 200 HAND<br>200 APENETRO-                                                                                                                           | 100 ME IE   | STRUCTURE<br>& Other Observation                                         | ns  |
| Í                      | ĪĪ                                                                                                                     |         | -                      |                          | - 0.0                          | <u> 11. 11.</u><br>1 <u>. 11.</u> 1 |                                             | TOPSOIL            | .: hard, light b                                                             | rown grey, with                                          | grass and tree roo | ots                         |          |                                    |                                                                                                                                                     |             | TOPSOIL                                                                  |     |
|                        |                                                                                                                        |         | _                      |                          | 577.5                          | 00                                  |                                             | 0.20m<br>Sandy gra | avelly SILT; g                                                               | rey brown, resid                                         | ual dacite         |                             | - 0      |                                    |                                                                                                                                                     | Í           | RESIDUAL SOIL                                                            |     |
|                        |                                                                                                                        |         | NO FREE GW OBSERVED    |                          |                                |                                     |                                             |                    | fine grained,<br>dium strength                                               |                                                          | specks, EW, EL-    | VL strength with            |          |                                    |                                                                                                                                                     |             | BEDROCK                                                                  | -   |
|                        |                                                                                                                        |         | NO FREE                |                          | <br>1.0                        |                                     |                                             | <u>1.10m</u>       |                                                                              | <br>ngth, with some                                      | — — — — — —        | es                          | _        |                                    |                                                                                                                                                     |             | 1.00: DEFECTS<br>(35/085), SM, PL, 1.0m<br>length                        | -   |
|                        |                                                                                                                        |         |                        |                          | 576.5                          |                                     |                                             | 1.40m              |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     | İ           | (36/085), SM, PL, 0.6m<br>length<br>(85/150), SM, UN, 1.4m<br>length D/S |     |
|                        |                                                                                                                        | ]       |                        |                          | 1.5                            |                                     |                                             | EXCAVA             | EXCAVATION TP10 TERMINATED AT 1.40 m<br>Target depth                         |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             | length D/S<br>1.25: DEFECT<br>(30/088), SM, PL, 0.8m<br>length           | -   |
|                        |                                                                                                                        |         |                        |                          | 576.0                          |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     | <br> <br>   |                                                                          |     |
|                        |                                                                                                                        |         |                        |                          | 2.0                            |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          | -   |
|                        |                                                                                                                        |         |                        |                          | 575.5                          |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          |     |
|                        |                                                                                                                        |         |                        |                          | 2.5 —                          |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     | Ì           |                                                                          | -   |
|                        |                                                                                                                        |         |                        |                          | 575.0                          |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     | <br> <br>   |                                                                          |     |
|                        |                                                                                                                        |         |                        |                          | 3.0 —<br>-<br>س –              |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          | -   |
| þ                      |                                                                                                                        |         |                        |                          | - 214:2                        |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          | _   |
|                        |                                                                                                                        |         |                        |                          | 574.0                          |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     | -<br>-<br>- |                                                                          |     |
|                        |                                                                                                                        |         |                        |                          | 4.0-                           |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     | <br> <br>   |                                                                          | -   |
|                        |                                                                                                                        |         |                        |                          | 573.5                          |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          |     |
|                        |                                                                                                                        |         |                        |                          | 4.5                            |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          | -   |
|                        |                                                                                                                        |         |                        |                          | 573.0                          |                                     |                                             |                    |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     |             |                                                                          |     |
|                        |                                                                                                                        |         | RAPHS                  | $\boxtimes$              | ⊥ <sub>5.0</sub><br>YES        | ļ                                   | [                                           | NO                 |                                                                              |                                                          |                    |                             |          |                                    |                                                                                                                                                     | i           |                                                                          |     |
| N<br>E<br>BH<br>B<br>R | METHOD<br>N Natural Exposure<br>E Existing Excavation<br>BH Backhoe Bucket<br>B Bulldozer Blade<br>R Ripper<br>SUPPORT |         |                        |                          | 3 Wate<br>Date sl              | istance<br>er                       | U50 -<br>D -<br>B -<br>MC -<br>HP -<br>VS - | Vane Shear; P-     | imple<br>ole<br>Sample<br>nt<br>neter (UCS kPa)<br>Peak,<br>uncorrected kPa) | Classific<br>MOISTURE<br>D - Dry<br>M - Moist<br>W - Wet | on Unit            | TION<br>fied                | &        |                                    | ISISTENCY/<br>ATIVE DENSITY<br>- Very Soft<br>- Firm<br>- Stiff<br>- Very Stiff<br>- Hard<br>- Very Loose<br>- Medium De<br>- Dense<br>- Very Dense | ense        |                                                                          |     |
| See<br>detai<br>& ba   | ils of a                                                                                                               | bbre    | / Note<br>/iation      | 5                        |                                |                                     |                                             |                    | SME                                                                          | C AUS                                                    | TRALIA             |                             |          |                                    |                                                                                                                                                     |             | SN SN                                                                    | IEC |

SMEC COMPUTATION SHEET 1163 Project Isabella Weir Ungrade Ol Page No. 09/04/15 Date. Project No. Schedule 2.2 (a)(ii Feature/Structure TPOI Calcs By... Plan View Details Checked By Samples D/S Topsoil Bitumen Seal Roadbase 2.6.7 0 -2.4 2.4 Residua Residua 5.5 m -2.4 MW 3 JA HK H LL V 11 01 0.2 Key GF-General Fill u/s Scale 1:100 EW- Esctremely Weathered TPOI UTM SSH Hw- Highly Weathered 0688593, 6077977 MW- Moderately Weathered.

SMEC COMPUTATION SHEET 1164 Project Isabella weir Ungrade 02 Page No. 09/04/15 Project No. Date. TPO2 Feature/Structure Schedule 2.2 (a)(ii Calcs By Plan View Details Checked By Samples Topsoil 1.4m 00 0 1 EW HW. GF 2.6m 6.541 Residual Residual GF 45 HW-6.2. 2.2 m 1.8 m 4F m2 | . 1 2.0. Scale 1:100 Key GF-Generral Fill TPO2 UTM 55H EW - Extremely weathered 0688560,6078033 Hw - Highly Weathered MW- Moderately Weathered





SMEC COMPUTATION SHEET 1166 Isabella Weir Ungrade 04 Project Page No. 09/04/15 Project No. Date TP04 Schedule 2.2 (a)(ii Feature/Structure Calcs By Plan View Details Checked By Location Samples 3/5 TP04/1.5-2.0/B N TP04/2.3-2.6/13 2:052 TPOU < 235 Note: Concrete wall exposed behind Collapsed face P/S Seepage from SP 1.4m Topsoil 2.0 0-1.8m -2.3 SF -2.3 3.0 CONT OF m2.t 135 Dacite C F 9:2-SP 25 Collapsed SP IL V SP L1 u/sScale 1:100 Key GF-General Fill TP04 UTM SSH SP - Poorly Graded SANDO 0688542,6078057 CI - Medium plasticity CLAY

SMEC COMPUTATION SHEET 1167 Project Isabella Weir Ungrade 05 Page No. 09/04/15 Project No. Date TP05 chedule 2.2 (a)(ii Feature/Structure .... Calcs By Plan View Details Checked By Samples TP05/1.5-2.04/5/B D/S TP05/1.5-2.0 D/S/B ID-70 Topsoil Seenage M TP05/4.0-4.5/B CL 1.4m 3 0 Ó 1:5 and the second LJ D Nix -70 しし して L'S ID-70 m2.8 2.2 1.0 20 27/20 2U 30 SC -2.5 -2.5 -2.5 -2:51 CL-CI Scale 1:100 u/s TP05 Key UTM S5H GC - Gravelly CLAY 0688532,6078062 CL - Low plasticity CLAY Location CI - Medium Masticity CLAY S TPOST u/s End of TW 2.8m 0-0 4.8m Scale MTS

SMEC COMPUTATION SHEET 1168 Project sabella Weir Ungrade 06 Page No... 09/04/15 Project No. Date. Calcs By....Schedule 2.2 (a)(ii Feature/Structure TPOG Plan View Details Checked By Samples TP06/1:0-1.6/B LAKE u/s TP06/10-14/U 9.7m 8.8m U/S Face to U/S (rest of fore 1. ...... · .: WALL :: A States A .... 2.6un Tonsoil 0.0 2.0-0 3. [24 U H 3,3 2.2 070° nati. ЦU L 45 U 1. Tru 10.5m 0.1-0.1-CORE 1.0m CORE CORE CORE CORE CORE GF Scale 1:100 1.4m Key TPOG 0/5 GF-General Fill UTM 55H 0688496, 6078109

SMEC COMPUTATION SHEET 1169 Isabella Weir Ungrade Project 0 7 Page No. 09/04/15 Date. Project No. TP07 Feature/Structure Calcs By... Plan View Details Checked By Samples TP07/3.0-3.5/ B TP07/4.0-4.8/B Collansed SAND Jill Saturated with see page Note: Boulders noted on surface adjacent to TPOT. D/S Topsoil SP 001 2.0-1.820 -3:0 0.2-15 3.8 3.8 8.4-4.8 6 000 6.2 m CI-CH CI-CH SP L V SP L 5 2.010 2F SP Scale 1: 100 u/s TP07 Key UTM SSH GF-General Fill 0688489,6078129 SP - Poorly Graded SAND Location 1.4m CI-CH Med. to High plasticity CLAY 0 WALL Scale NTS

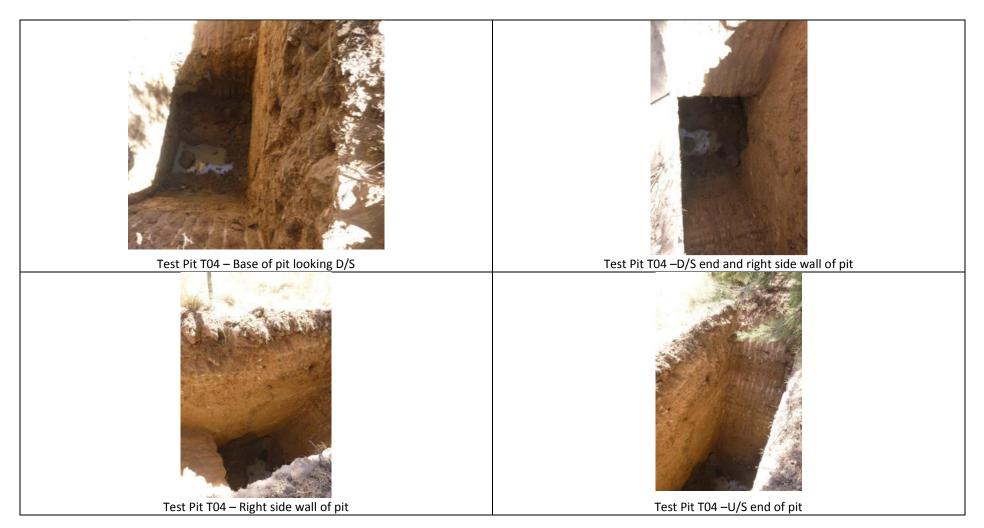




SMEC COMPUTATION SHEET 1172 Project Isabella Weir Ungrade 10 Page No. ୦୩/୦4/୮୨ Schedule 2.2 (a)(ii Project No. Date. TPIO Feature/Structure Calcs By. Plan View Details Checked By Samples Topsoil p/s 0.0.1 Defects A THE **k** (1) () (30/088) SM PL 0.8m length (2) (35/085) SM PL 1.0m length (3) (36/085) SM PL 0.6m length (4) (85/150) SM GN 1.4m length 1150 HW -1.4 MM H~ Residua EV μŇ Residua i -9.0 .9.0 u/s Scale 1:100 Key EW - Extremely Weathered HW - Highly Weathered TPIO UTM 55H 0688477,6078140















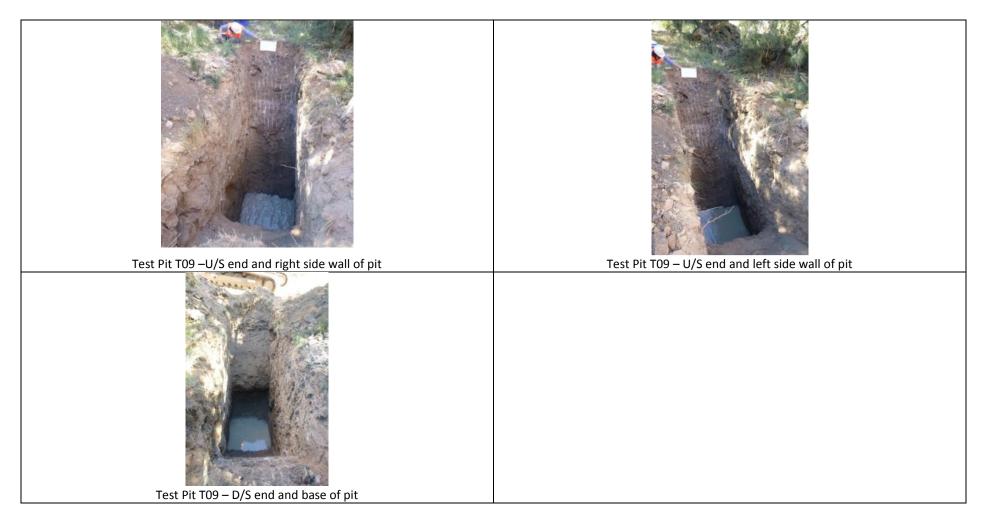




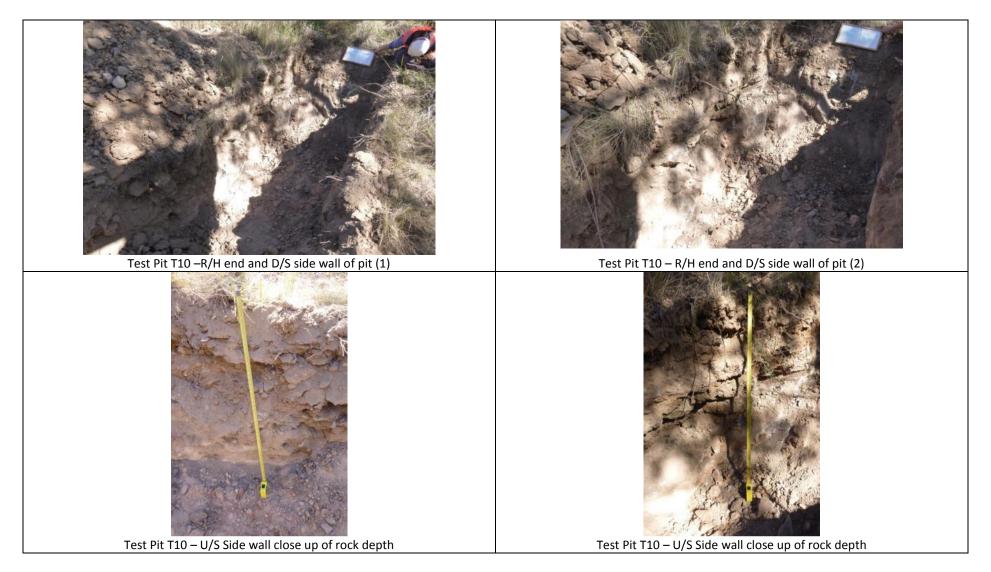






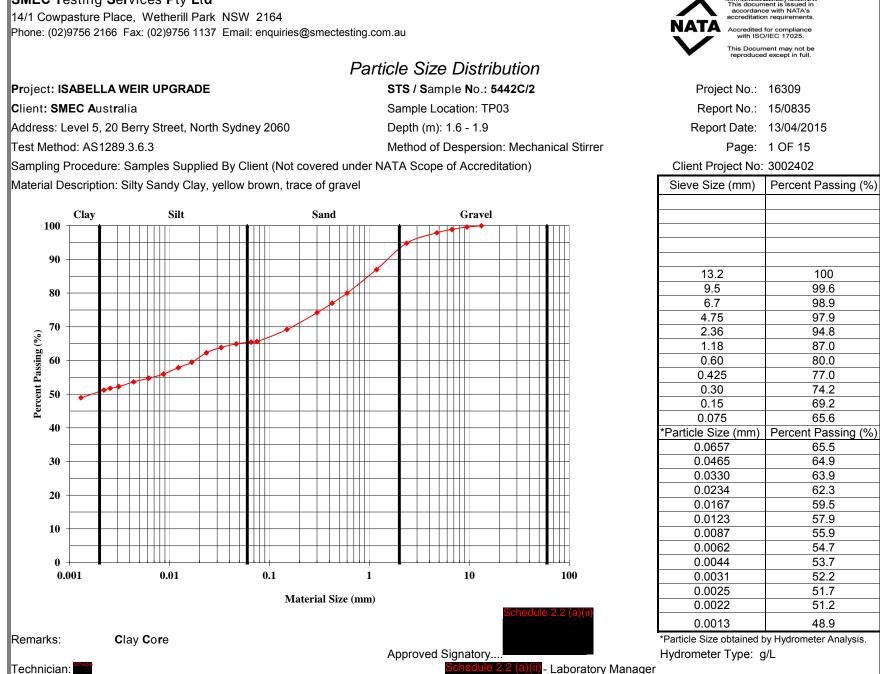














APPENDIX 4.01: SMEC LABORATORY TESTING CERTIFICATES, 2015

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |



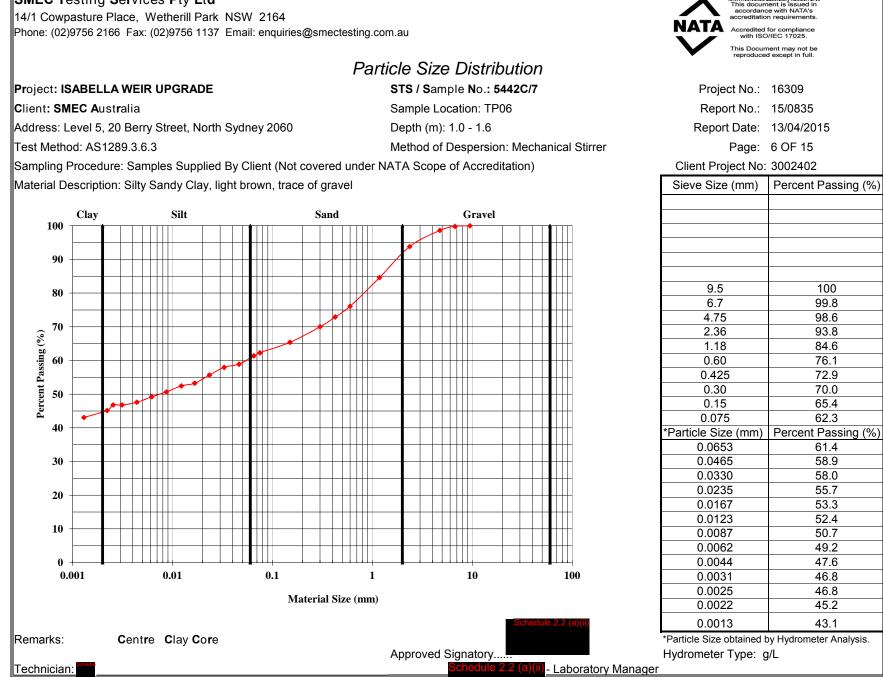
NATA Accredited Laboratory Number: 2750

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |

| 14/1 Cowpasture F                                                        | Services Pty Lto<br>Place, Wetherill Pa<br>66 Fax: (02)9756 113 |                       | mectesting.com. | au                                                   |             |                         | NATA<br>With ISC<br>This Docur                          | Laboratory Number: 2750<br>tent is issued in<br>ewith NATA's<br>n requirements.<br>for compliance<br>v/IEC 17025.<br>nent may not be |
|--------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|-----------------|------------------------------------------------------|-------------|-------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          |                                                                 |                       | Partic          | le Size L                                            | Distribu    | tion                    | <ul> <li>reproduce</li> </ul>                           | d except in full.                                                                                                                    |
| Project: ISABELL                                                         | A WEIR UPGRADE                                                  | <b>E</b>              | s               | TS / Sample                                          | No.: 5442   | 2C/3                    | Project No.:                                            | 16309                                                                                                                                |
| Client: SMEC Aus                                                         |                                                                 |                       |                 | •                                                    |             |                         | Report No.:                                             |                                                                                                                                      |
|                                                                          |                                                                 |                       |                 | -                                                    |             |                         |                                                         |                                                                                                                                      |
| Address: Level 5, 20 Berry Street, North Sydney 2060Depth (m): 2.3 - 2.6 |                                                                 |                       |                 | Report Date:                                         |             |                         |                                                         |                                                                                                                                      |
| Test Method: AS12                                                        | 289.3.6.3                                                       |                       | N               | lethod of De                                         | spersion: N | lechanical Stirrer      | Page:                                                   | 2 OF 15                                                                                                                              |
| Sampling Procedu                                                         | re: Samples Supplie                                             | ed By Client (Not cov | ered under NA   | TA Scope of                                          | Accreditat  | on)                     | Client Project No:                                      | 3002402                                                                                                                              |
| Material Descriptio                                                      | n: Silty Gravelly Sa                                            | nd, grey brown, trace | of clay         |                                                      |             |                         | Sieve Size (mm)                                         | Percent Passing (%)                                                                                                                  |
| Clay                                                                     | Silt                                                            | s                     | and             |                                                      | Gravel      |                         |                                                         |                                                                                                                                      |
| 100                                                                      |                                                                 |                       |                 | <b>t</b>                                             |             |                         |                                                         |                                                                                                                                      |
|                                                                          |                                                                 |                       |                 |                                                      |             | ┼┼┼╂┼┼┤                 |                                                         |                                                                                                                                      |
| 90                                                                       |                                                                 |                       |                 |                                                      |             |                         |                                                         |                                                                                                                                      |
|                                                                          |                                                                 |                       |                 |                                                      |             |                         | 13.2                                                    | 97.4                                                                                                                                 |
| 80                                                                       |                                                                 |                       |                 | ▶<br>▶                                               |             |                         | 9.5                                                     | 95.2                                                                                                                                 |
|                                                                          |                                                                 |                       |                 | 4                                                    |             |                         | 6.7                                                     | 92.7                                                                                                                                 |
| - 70                                                                     |                                                                 |                       |                 |                                                      |             |                         | 4.75                                                    | 89.5                                                                                                                                 |
| (% <sup>70</sup>                                                         |                                                                 |                       | │               |                                                      |             |                         | 2.36                                                    | 81.0                                                                                                                                 |
| Percent Passing (%)                                                      |                                                                 |                       |                 |                                                      |             |                         | 1.18                                                    | 67.1                                                                                                                                 |
| -i <u>ss</u> 60                                                          |                                                                 |                       |                 |                                                      |             |                         | 0.60                                                    | 52.1                                                                                                                                 |
| t Pa                                                                     |                                                                 |                       |                 |                                                      |             |                         | 0.425                                                   | 46.0                                                                                                                                 |
| j 50                                                                     |                                                                 |                       |                 |                                                      |             |                         | 0.30                                                    | 40.5                                                                                                                                 |
| Pero                                                                     |                                                                 |                       | <b>/</b>        |                                                      |             |                         | 0.15                                                    | 33.0                                                                                                                                 |
| 40                                                                       |                                                                 |                       |                 |                                                      |             |                         | 0.075                                                   | 28.7                                                                                                                                 |
|                                                                          |                                                                 |                       |                 |                                                      |             |                         | *Particle Size (mm)                                     | Percent Passing (%)                                                                                                                  |
| 30                                                                       |                                                                 |                       |                 |                                                      |             |                         | 0.0706                                                  | 28.5<br>26.8                                                                                                                         |
| 30                                                                       |                                                                 |                       |                 |                                                      |             |                         | 0.0355                                                  | 26.6                                                                                                                                 |
|                                                                          |                                                                 |                       |                 |                                                      |             |                         | 0.0355                                                  | 25.3                                                                                                                                 |
| 20                                                                       |                                                                 |                       |                 |                                                      |             |                         | 0.0235                                                  | 23.3                                                                                                                                 |
|                                                                          |                                                                 |                       |                 |                                                      |             |                         | 0.0132                                                  | 21.4                                                                                                                                 |
| 10                                                                       |                                                                 |                       |                 |                                                      |             |                         | 0.0094                                                  | 19.2                                                                                                                                 |
|                                                                          |                                                                 |                       |                 | $\blacksquare + + + + + + + + + + + + + + + + + + +$ |             |                         | 0.0067                                                  | 17.0                                                                                                                                 |
| 0                                                                        |                                                                 |                       |                 |                                                      |             |                         | 0.0048                                                  | 15.1                                                                                                                                 |
| 0.001                                                                    | 0.01                                                            | 0.1                   | 1               |                                                      | 10          | 100                     | 0.0034                                                  | 14.9                                                                                                                                 |
|                                                                          |                                                                 |                       |                 |                                                      |             |                         | 0.0028                                                  | 14.4                                                                                                                                 |
|                                                                          |                                                                 | Materi                | al Size (mm)    |                                                      | _           |                         | 0.0024                                                  | 12.6                                                                                                                                 |
|                                                                          |                                                                 |                       |                 |                                                      | S           | chedule 2.2 (a)(ii)     | 0.0014                                                  | 10.9                                                                                                                                 |
| Remarks:<br>Technician: <sup>sereen</sup>                                | Sand Fill                                                       |                       | A               | pproved Sig                                          | natory      | (a)(ii)- Laboratory Man | *Particle Size obtained I<br>Hydrometer Type: g<br>ager |                                                                                                                                      |

| SMEC   | : Testing Ser   | vices Pty L    | .t <b>d</b> |                             |
|--------|-----------------|----------------|-------------|-----------------------------|
| 14/1 C | owpasture Place | e, Wetherill P | Park NSW    | 2164                        |
| Phone: | (02)9756 2166 F | ax: (02)9756 1 | 137 Email:  | enquiries@smectesting.com.a |

| 14/1 Cowpas         | sture Pla | ervices Pty Ltd<br>ace, Wetherill Park N<br>5 Fax: (02)9756 1137 E |                               | mectesting.com.a        | au          |              |            |                |               | NATA<br>With ISC<br>This Docur                | Laboratory Number: 2750<br>nent is lesued in<br>se with NATA's<br>on requirements.<br>for compliance<br>o/IEC 17025.<br>ment may not be |
|---------------------|-----------|--------------------------------------------------------------------|-------------------------------|-------------------------|-------------|--------------|------------|----------------|---------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                     |           |                                                                    |                               | Partic                  | le Size     | Distribu     | ıtion      |                |               | ✓ reproduce                                   | d except in full.                                                                                                                       |
| Proiect: ISA        | BELLA     | WEIR UPGRADE                                                       |                               | S                       | TS / Samp   | ole No.: 544 | 42C/4      |                |               | Project No.:                                  | 16309                                                                                                                                   |
| Client: SME         |           |                                                                    |                               |                         |             | ation: TP05  |            |                |               | Report No.:                                   |                                                                                                                                         |
|                     |           | ) Berry Street, North S                                            | Svdpov 2060                   |                         | epth (m): 1 |              | ,          |                |               | Report Date:                                  |                                                                                                                                         |
|                     |           | -                                                                  | Syuney 2000                   |                         |             |              |            |                |               | -                                             |                                                                                                                                         |
| Test Method         |           |                                                                    |                               |                         |             | espersion:   |            | nica           | Stirrer       | •                                             | 3 OF 15                                                                                                                                 |
| Sampling Pro        | ocedure   | e: Samples Supplied E                                              | By Client (Not cove           | ered under NAT          | A Scope of  | of Accredita | ation)     |                |               | Client Project No:                            | 3002402                                                                                                                                 |
| Material Des        | cription  | : Gravelly Sand, brow                                              | n, trace of silt/clay         | /                       |             |              |            |                |               | Sieve Size (mm)                               | Percent Passing (%)                                                                                                                     |
|                     | Clay      | Silt                                                               | S                             | and                     |             | Gravel       |            |                |               |                                               |                                                                                                                                         |
| 100 —               | <u>-</u>  |                                                                    |                               |                         |             |              |            | t I I I        | 1             | 37.5                                          | 100.0                                                                                                                                   |
|                     |           |                                                                    | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ |                         |             |              |            |                | -             | 26.5                                          | 99.2                                                                                                                                    |
| 90 —                |           |                                                                    |                               |                         |             |              |            |                | -             | 19.0                                          | 96.7                                                                                                                                    |
| _                   |           |                                                                    |                               |                         |             |              |            |                | -             | 13.2                                          | 95.9                                                                                                                                    |
| 80 -                |           |                                                                    |                               |                         |             |              |            |                | _             | 9.5                                           | 93.6                                                                                                                                    |
| 00                  |           |                                                                    |                               |                         |             |              |            |                |               | 6.7                                           | 90.8                                                                                                                                    |
|                     |           |                                                                    |                               |                         |             |              |            |                |               | 4.75                                          | 86.8                                                                                                                                    |
| ् <sup>70</sup> –   |           |                                                                    |                               |                         |             |              |            |                | -             | 2.36                                          | 78.0                                                                                                                                    |
| Percent Passing (%) |           |                                                                    |                               |                         |             |              |            |                | -             | 1.18                                          | 65.5                                                                                                                                    |
| - 60 -              |           |                                                                    |                               |                         |             |              |            |                | -             | 0.60                                          | 50.8                                                                                                                                    |
| Pas                 |           |                                                                    |                               |                         |             |              |            |                | -             | 0.425                                         | 44.9                                                                                                                                    |
| <b>t</b> 50 -       |           |                                                                    |                               |                         |             |              |            |                | -             | 0.30                                          | 40.0                                                                                                                                    |
| erce                |           |                                                                    |                               |                         |             |              |            |                |               | 0.15                                          | 33.1                                                                                                                                    |
|                     |           |                                                                    |                               |                         |             |              |            |                |               | 0.075                                         | 29.0                                                                                                                                    |
| 40 —                |           |                                                                    |                               |                         |             |              |            |                |               | *Particle Size (mm)                           | Percent Passing (%)                                                                                                                     |
| _                   |           |                                                                    |                               |                         |             |              |            |                | -             | 0.0696                                        | 27.9                                                                                                                                    |
| 30 -                |           |                                                                    |                               |                         |             |              |            |                | -             | 0.0497                                        | 25.7                                                                                                                                    |
| _                   |           |                                                                    |                               |                         |             |              |            |                | -             | 0.0353                                        | 24.7                                                                                                                                    |
| 20 —                |           |                                                                    |                               |                         |             |              |            |                | -             | 0.0251                                        | 23.6                                                                                                                                    |
|                     |           |                                                                    |                               |                         |             |              |            |                |               | 0.0179                                        | 21.6                                                                                                                                    |
| 10                  | •         |                                                                    |                               |                         |             |              |            |                |               | 0.0131                                        | 20.4                                                                                                                                    |
| 10 -                |           |                                                                    |                               |                         |             |              |            |                | ]             | 0.0093                                        | 19.3                                                                                                                                    |
|                     |           |                                                                    |                               |                         |             |              |            |                | 1             | 0.0066                                        | 18.1                                                                                                                                    |
| 0 +                 |           |                                                                    |                               | · · · · · · · · · · · · |             |              |            | <b>∦      </b> | 1             | 0.0047                                        | 17.2                                                                                                                                    |
| 0.00                | 1         | 0.01                                                               | 0.1                           | 1                       |             | 10           |            | 1              | 00            | 0.0033                                        | 16.3                                                                                                                                    |
|                     |           |                                                                    | Materi                        | al Size (mm)            |             |              |            |                |               | 0.0027                                        | 15.9                                                                                                                                    |
|                     |           |                                                                    |                               |                         |             |              |            |                |               | 0.0024                                        | 14.8                                                                                                                                    |
|                     |           |                                                                    |                               |                         |             |              | Schedul    | e 2.2          | (a)(ii)       | 0.0014                                        | 13.5                                                                                                                                    |
| Remarks:            | chedui    | US General Fill                                                    |                               | A                       |             | ignatory     |            | 1 -1           | anotom - NA - | *Particle Size obtained<br>Hydrometer Type: ( |                                                                                                                                         |
| Technician:         |           |                                                                    |                               |                         |             | Schedule 2.  | .2 (d)(ll) | Lat            | oratory Mana  | ger                                           |                                                                                                                                         |


| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |

| 14/1 Cowpasture       | Services Pty Ltd<br>Place, Wetherill Park N<br>66 Fax: (02)9756 1137 E |                   | smectesting.com.  | au                                           |                            | Accreditation<br>with ISC<br>This Docur    | Laboratory Number 2750<br>tent is issued in<br>e with NATA's<br>n requirements.<br>for compliance<br>VIEC 17025.<br>nent may not be |
|-----------------------|------------------------------------------------------------------------|-------------------|-------------------|----------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                        |                   | Partic            | le Size Distribu                             | ıtion                      | <ul> <li>reproduce</li> </ul>              | d except in full.                                                                                                                   |
| Project: ISABEL I     | A WEIR UPGRADE                                                         |                   | s                 | <b>TS / S</b> ample <b>N</b> o.: <b>54</b> 4 | 2C/5                       | Project No.:                               | 16309                                                                                                                               |
| -                     |                                                                        |                   |                   |                                              |                            | -                                          |                                                                                                                                     |
| Client: SMEC Au       |                                                                        |                   |                   | ample Location: TP05                         |                            | Report No.:                                |                                                                                                                                     |
| Address: Level 5,     | 20 Berry Street, North S                                               | Sydney 2060       | D                 | epth (m): 1.5 - 2.5                          |                            | Report Date:                               | 13/04/2015                                                                                                                          |
| Fest Method: AS1      | 289.3.6.3                                                              |                   | Ν                 | lethod of Despersion:                        | Mechanical Stirrer         | Page:                                      | 4 OF 15                                                                                                                             |
| Sampling Procedu      | ure: Samples Supplied E                                                | By Client (Not co | vered under NAT   | A Scope of Accredita                         | tion)                      | Client Project No:                         | 3002402                                                                                                                             |
|                       | on: Silty Sandy Clay, bro                                              |                   |                   | -                                            | ,                          | Sieve Size (mm)                            | Percent Passing (%                                                                                                                  |
|                       | one only oundy only, ore                                               | sinn, yenen sren  | in, adde er grave | •                                            |                            |                                            | r ereentr deeling ()                                                                                                                |
| Clay                  | Silt                                                                   |                   | Sand              | Gravel                                       |                            |                                            |                                                                                                                                     |
|                       |                                                                        |                   |                   |                                              |                            | 37.5                                       | 100                                                                                                                                 |
|                       |                                                                        |                   |                   |                                              |                            | 26.5                                       | 100                                                                                                                                 |
| 90                    |                                                                        |                   | + + + + + + + +   |                                              |                            | 19.0                                       | 98.5                                                                                                                                |
|                       |                                                                        |                   |                   |                                              |                            | 13.2                                       | 96.7                                                                                                                                |
| 80                    |                                                                        |                   |                   |                                              |                            | 9.5                                        | 96.1                                                                                                                                |
| 00                    |                                                                        |                   |                   |                                              |                            | 6.7                                        | 95.7                                                                                                                                |
|                       |                                                                        |                   |                   |                                              |                            | 4.75                                       | 94.9                                                                                                                                |
| ्र <sup>70</sup>      |                                                                        |                   |                   |                                              |                            | 2.36                                       | 92.5                                                                                                                                |
| e) 80                 |                                                                        |                   |                   |                                              |                            | 1.18                                       | 86.7                                                                                                                                |
| ·j 60                 |                                                                        | ┝┛                |                   |                                              |                            | 0.60                                       | 81.3                                                                                                                                |
| Pas                   |                                                                        |                   |                   |                                              |                            | 0.425                                      | 79.0                                                                                                                                |
| ŧ 50                  |                                                                        |                   |                   |                                              |                            | 0.30                                       | 76.7                                                                                                                                |
| Percent Passing (%)   |                                                                        |                   |                   |                                              |                            | 0.15                                       | 73.0                                                                                                                                |
|                       |                                                                        |                   |                   |                                              |                            | 0.075                                      | 70.5                                                                                                                                |
| 40                    |                                                                        |                   |                   |                                              |                            | *Particle Size (mm)                        |                                                                                                                                     |
|                       |                                                                        |                   |                   |                                              |                            | 0.0637                                     | 66.0                                                                                                                                |
| 30                    |                                                                        |                   |                   |                                              |                            | 0.0459                                     | 60.5                                                                                                                                |
|                       |                                                                        |                   |                   |                                              |                            | 0.0325                                     | 59.6                                                                                                                                |
| 20                    |                                                                        |                   |                   |                                              |                            | 0.0231                                     | 58.2                                                                                                                                |
|                       |                                                                        |                   |                   |                                              |                            | 0.0164                                     | 57.4                                                                                                                                |
| 10                    |                                                                        |                   |                   |                                              |                            | 0.0120                                     | 55.8                                                                                                                                |
|                       |                                                                        |                   |                   |                                              |                            | 0.0085                                     | 54.5                                                                                                                                |
|                       |                                                                        |                   |                   |                                              |                            | 0.0061                                     | 53.3                                                                                                                                |
| 0 + <b>I</b><br>0.001 | 0.01                                                                   | 0.1               | 1                 | 10                                           | 100                        | 0.0043                                     | 52.2                                                                                                                                |
| 0.001                 | 0.01                                                                   | 0.1               | I                 | 10                                           | 100                        | 0.0031                                     | 51.5<br>51.5                                                                                                                        |
|                       |                                                                        | Mate              | rial Size (mm)    |                                              |                            | 0.0025                                     | 49.8                                                                                                                                |
|                       |                                                                        |                   |                   | _                                            | Schedule 2.2 (a)(ii)       |                                            |                                                                                                                                     |
|                       |                                                                        |                   |                   |                                              |                            | 0.0013                                     | 49.0                                                                                                                                |
| Remarks:              | DS Clay Core                                                           |                   | A                 | pproved Signatory<br>Schedule 2.2            | 2 (a)(ii) - Laboratory Mar | *Particle Size obtained Hydrometer Type: g |                                                                                                                                     |

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |

| 1/1 Comparison Prodect, weithering Prake, Ney Printel       Project: ISABELLA WEIR UPGRADE       STA / Sample Location: TPOS       Depth (m): 0.5 142C/3       Sample Location: TPOS       Depth (m): 0.5 120 Sinter Method: 1820 Page: 50 Page:                                                                                                                                                                                                       |                 | ng <b>S</b> e <b>r</b> vices <b>P</b> ty <b>L</b> |                          |                   |                   |              |                           | NATA Accredited<br>This docum<br>accordance | Laboratory Number: 2750<br>nent is issued in<br>ce with NATA's |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------|--------------------------|-------------------|-------------------|--------------|---------------------------|---------------------------------------------|----------------------------------------------------------------|
| <ul> <li>The control of the full production of the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full mean shape decided in the full me</li></ul>                                                                                                                   |                 |                                                   |                          |                   |                   |              |                           |                                             | on requirements.                                               |
| Project: ISABELLA WEIR UPGRADE<br>Tain: SMEC Australia<br>Samples Location: TP06<br>Deptin(1): 0.5-1.0<br>Test Method: AS1289.3.6.3<br>Test Method: AS1289.3.6.3<br>Test Method of Despersion: Mechanical Stirrer<br>Tainal procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)<br>Haterial Description: Silty Carvelly Sand, brown, race of clar<br>Test Method of Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion: Mechanical Stirrer<br>Test Method Despersion                             | Phone: (02)9756 | 6 2166 Fax: (02)9756 1                            | 1137 Email: enquiries@s  | smectesting.com.a | u                 |              |                           | with ISC                                    | D/IEC 17025.                                                   |
| Project: ISABELLA WEIR UPGRADE<br>Linet: SMEC Australia<br>Madress: Level 5, 20 Berry Street, North Sydney 2000<br>Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)<br>Material Description: Silty Gravelly Sand, brown, trace of class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                   |                          |                   |                   |              |                           | This Docur<br>reproduce                     | nent may not be<br>d except in full.                           |
| Ellent: SMEC Australia Sample Location: TPOE Depth (m): 0.5 1.0 Method of Despersion: Mechanical Stirrer Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation) daterial Description: Silty Gravelly Sand, brown, trace of clay<br>The transmismed of the transmismed of transmismed of transmismed of the transmismed of the transmismed of the transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmismed of transmi                                                                                                                        |                 |                                                   |                          | Particl           | e Size I          | Distribut    | ion                       |                                             |                                                                |
| Address: Level 5, 20 Berry Street, North Sydney 2060<br>Test Method: AS1289.3.6.3<br>Method of Despersion: Mechanical Stimer<br>Addreal Descriptor: Silty Gravelly Sand, brown, trace of clay<br>The street Method: AS1289.3.6.3<br>The street Method: AS1289.3.7<br>The street Method: AS12 | Project: ISABI  | ELLA WEIR UPGRA                                   | DE                       | ST                | <b>S / S</b> ampl | e No.: 5442  | C/5                       | Project No.:                                | 16309                                                          |
| Test Method: AS1289.3.3 Method of Despersion: Mechanical Stirrer<br>Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)<br>daterial Description: Silty Gravelly Sand, brown, trace of clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Client: SMEC    | <b>A</b> ust <b>r</b> alia                        |                          | Sa                | mple Loca         | tion: TP06   |                           | Report No.:                                 | 15/0835                                                        |
| Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)<br>Jaterial Description: Silty Gravelly Sand, brown, trace of clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Address: Leve   | I 5, 20 Berry Street, N                           | lorth Sydney 2060        | De                | epth (m): 0.      | 5 - 1.0      |                           | Report Date:                                | 13/04/2015                                                     |
| Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)<br>Jaterial Description: Silty Gravelly Sand, brown, trace of clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Method: A  | AS1289.3.6.3                                      |                          | M                 | ethod of De       | espersion: N | lechanical Stirrer        | Page:                                       | 5 OF 15                                                        |
| Adderial Description: Silty Gravelly Sand, brown, trace of clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling Proc   | edure: Samples Supr                               | plied By Client (Not cov |                   |                   | -            |                           |                                             |                                                                |
| 100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                   |                          |                   |                   |              | - /                       |                                             |                                                                |
| Chy       Silt       Sand       Gravel         90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 100       0       37.5       98.2         100       0       0       96.2         100       0       95.4       13.2       94.0         13.2       94.0       95.5       93.4         13.2       94.0       9.6       9.6       9.6         13.2       94.0       9.6       9.6       9.6         13.2       94.0       9.6       9.6       9.6         13.2       94.0       9.6       9.6       9.6         13.2       94.0       9.6       9.6       9.6         13.2       94.0       9.6       9.7       91.6         4.75       89.6       2.5       9.6       0.6         0.30       49.5       0.15       40.8       0.075       34.4         Particle Size (mm) Percent Passing (%)       0.0694       32.5       0.0496       30.1         0.0552       28.8       0.0252       28.4       0.0132       22.9       0.0094       21.0         0.0014       14.0       10       100       0.0024       15.5       0.0024       15.5       0.0024       15.5       0.0024       15.5       0.0024       15.5       0.0024       15.5 </td <td>Cla</td> <td>ay Silt</td> <td></td> <td>Sand</td> <td></td> <td>Gravel</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cla             | ay Silt                                           |                          | Sand              |                   | Gravel       |                           |                                             |                                                                |
| 90       90       90       96       96.5       96.2         13.2       94.0       9.5       93.4         67       91.6       4.75       89.6         2.36       82.9       1.18       72.5         0.60       60.6       0.425       54.9         0.30       49.5       9.3.4       0.7         91.6       4.75       89.6       2.36       82.9         1.18       72.5       0.60       60.6       0.425       54.9         0.30       49.5       0.15       40.8       0.075       34.4         *Particle Size (mm)       Percent Passing (%)       0.0694       32.5       0.00496       30.1         0.0352       28.8       0.0252       26.4       0.0180       24.1         0.0132       22.9       0.0094       21.0       0.0094       21.0         0.0024       15.5       0.0014       14.8       0.0024       15.5         0.0014       14.0       14.0       0.0024       15.5         0.0024       15.5       0.0014       14.0         0.0024       15.5       0.0014       14.0         0.0024       15.5       0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100             |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 9.5       93.4         6.7       91.6         9.5       93.4         6.7       91.6         4.75       89.6         2.36       82.9         1.18       72.5         0.60       60.6         0.425       54.9         0.30       49.5         0.30       49.5         0.30       49.5         0.15       40.8         0.075       34.4         *Particle Size (mm)       Percent Passing (%)         0.0352       28.8         0.0252       26.4         0.0132       22.9         0.0034       16.5         0.0024       15.5         0.0024       15.5         0.0024       16.5         0.0024       15.5         0.0024       15.5         0.0024       15.5         0.0024       15.5         0.0024       15.5         0.0024       15.5         0.0014       14.0         0.0028       16.5         0.0024       15.5         0.0014       14.0         0.0028       16.5         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90 —            |                                                   |                          |                   |                   |              |                           | 19.0                                        | 95.4                                                           |
| 0       6.7       91.6         4.75       89.6         4.75       89.6         4.75       89.6         1.18       72.5         0.00       0.00         0       0.425         0.40       0.425         0.40       0.425         0.40       0.425         0.40       0.425         0.40       0.425         0.40       0.425         0.40       0.425         0.40       0.425         0.40       0.425         0.41       0.425         0.42       0.425         0.42       0.425         0.42       0.425         0.42       0.425         0.42       0.42         0.15       40.8         0.075       34.4         *Particle Size (mm)       Percent Passing (%)         0.00496       0.01         0.0132       22.9         0.00496       0.01         0.0024       15.5         0.0024       15.5         0.0024       15.5         0.0024       15.5         0.0024       15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                   |                          |                   |                   |              |                           | 13.2                                        | 94.0                                                           |
| Image: constrained state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state stat                                                                                                                                                        | 80              |                                                   |                          |                   | ≁                 |              |                           | 9.5                                         | 93.4                                                           |
| 2.36       82.9         1.18       72.5         0       0.60       60.6         0.425       54.9         0.30       49.5         0.15       40.8         0.075       34.4         "Particle Size (mm)       Percent Passing (%)         0.0352       28.8         0.0252       26.4         0.010       0.1       1         Naterial Size (mm)       100         0.0024       15.5         0.0014       14.0         0.0024       15.5         0.0014       14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00              |                                                   |                          |                   |                   |              |                           | 6.7                                         | 91.6                                                           |
| 30       0.2.9         40       0.118         40       0.015         40       0.075         40       0.015         40       0.015         40       0.015         40       0.015         40       0.015         40       0.015         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.010         40       0.011         40       0.0028         40       0.0024         41.10       0.0028         40.00132       22.9         0.0024       16.5         0.0024       16.5         0.0024       15.5         0.0024       16.5         0.0024       15.5         0.0014       14.0         14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                   |                          | ×                 |                   |              |                           | 4.75                                        | 89.6                                                           |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td>् 70 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.36</td><td>82.9</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ् 70 —          |                                                   |                          |                   |                   |              |                           | 2.36                                        | 82.9                                                           |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td>÷ –</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.18</td><td>72.5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷ –             |                                                   |                          |                   |                   |              |                           | 1.18                                        | 72.5                                                           |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td>-iğ 60 —</td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td>0.60</td><td>60.6</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -iğ 60 —        |                                                   |                          | <u> </u>          |                   |              |                           | 0.60                                        | 60.6                                                           |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td>Pas</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.425</td><td>54.9</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pas             |                                                   |                          |                   |                   |              |                           | 0.425                                       | 54.9                                                           |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td>1 50 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.30</td><td>49.5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 50 -          |                                                   |                          |                   |                   |              |                           | 0.30                                        | 49.5                                                           |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td>erce</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>40.8</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erce            |                                                   |                          |                   |                   |              |                           |                                             | 40.8                                                           |
| 30       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 30       0.0496       30.1         20       0.0352       28.8         0.0252       26.4         0.01       0.1       1       0         0.001       0.01       1       10       100         0.0047       18.0         0.0028       16.5         0.0024       15.5         0.0014       14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40              |                                                   |                          |                   |                   |              |                           | *Particle Size (mm)                         | Percent Passing (%)                                            |
| 20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30              |                                                   |                          |                   |                   |              |                           |                                             | 30.1                                                           |
| 20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 —            |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 0       0.001       0.01       0.1       1       10       100         0       0.001       0.01       0.1       1       10       100         Material Size (mm)         Schedule 2.2 (a)(fi)         *Particle Size obtained by Hydrometer Analysis.         Mydrometer Type: g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10              |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10              |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| 0.001       0.01       0.1       1       10       100       0.0034       16.8         Material Size (mm)         Schedule 2.2 (a)(ii)         Remarks:       General Fill         Approved Signatory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                                   |                          |                   |                   |              |                           |                                             |                                                                |
| Material Size (mm)     0.0028     16.5       0.0024     15.5       0.0014     14.0       *Particle Size obtained by Hydrometer Analysis.       Hydrometer Type: g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -               |                                                   |                          | ·····             |                   | 10           |                           |                                             |                                                                |
| Material Size (mm)     0.0024     15.5       Remarks:     General Fill     0.0014     14.0       *Particle Size obtained by Hydrometer Analysis.       Hydrometer Type:     g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001           | 0.01                                              | 0.1                      | 1                 |                   | 10           | 100                       |                                             |                                                                |
| Remarks:     General Fill       Approved Signatory     Hydrometer Type: g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                   | Mater                    | ial Size (mm)     |                   |              |                           |                                             |                                                                |
| Remarks:       General Fill       *Particle Size obtained by Hydrometer Analysis.         Approved Signatory       Hydrometer Type: g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                          | × /               |                   |              |                           |                                             |                                                                |
| Approved Signatory Hydrometer Type: g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                          |                   |                   | S            | chedule 2.2 (a)(ii)       |                                             | -                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks:        | General Fill                                      |                          |                   |                   |              |                           |                                             |                                                                |
| Fechnician: Schedule 2.2 (a)(ii) - Laboratory Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                   |                          | Ap                | proved Sig        |              |                           |                                             | g/L                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Technician:     | · · · · · · · · · · · · · · · · · · ·             |                          |                   | S                 | chedule 2.2  | (a)(ii) - Laboratory Mana | ager                                        |                                                                |

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |



NATA Accredited Laboratory Number: 2750

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |

| MEC Testing Se<br>4/1 Cowpasture Pla<br>hone: (02)9756 2166 | ce, Wetherill Par |                         | mectesting.com.a | u                         |                                         | NATA<br>with ISC                                | Labotatory Number (2750)<br>nenti si issued in<br>be with NATA's<br>on requirements.<br>for compliance<br>J/IEC 17025.<br>nent may not be<br>d except in full. |
|-------------------------------------------------------------|-------------------|-------------------------|------------------|---------------------------|-----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |                   |                         | Particle         | e Size Distributior       | า                                       | <ul> <li>reproduce</li> </ul>                   | a except in tuil.                                                                                                                                              |
| roject: ISABELLA                                            | WEIR UPGRADE      |                         | ST               | S / Sample No.: 5442C/9   | )                                       | Project No.:                                    | 16309                                                                                                                                                          |
| lient: SMEC Austra                                          |                   |                         |                  | mple Location: TP06       |                                         | Report No.:                                     |                                                                                                                                                                |
| ddress: Level 5, 20                                         |                   | th Sudnay 2060          |                  | pth (m): 2.0 - 2.5        |                                         | Report Date:                                    |                                                                                                                                                                |
|                                                             | -                 | un Syuney 2000          |                  | ,                         |                                         | •                                               |                                                                                                                                                                |
| est Method: AS128                                           |                   |                         |                  | ethod of Despersion: Mech | nanical Stirrer                         | •                                               | 7 OF 15                                                                                                                                                        |
| ampling Procedure:                                          | Samples Supplie   | ed By Client (Not cove  | ered under NAT   | A Scope of Accreditation) |                                         | Client Project No:                              | 3002402                                                                                                                                                        |
| aterial Description:                                        | Gravelly Sand, br | rown, trace of clay/sil | t                |                           |                                         | Sieve Size (mm)                                 | Percent Passing (%                                                                                                                                             |
|                                                             |                   |                         |                  |                           |                                         | 75.0                                            | 100                                                                                                                                                            |
| Clay                                                        | Silt              | S                       | and              | Gravel                    |                                         | 53.0                                            | 96.8                                                                                                                                                           |
| 100                                                         |                   |                         |                  |                           |                                         | 37.5                                            | 89.4                                                                                                                                                           |
|                                                             |                   |                         |                  |                           | 1111                                    | 26.5                                            | 85.0                                                                                                                                                           |
| 90                                                          |                   |                         |                  |                           | + + + + + +                             | 19.0                                            | 81.6                                                                                                                                                           |
|                                                             |                   |                         |                  |                           | +++++                                   | 13.2                                            | 80.0                                                                                                                                                           |
| 80                                                          |                   |                         |                  |                           |                                         | 9.5                                             | 77.7                                                                                                                                                           |
|                                                             |                   |                         |                  |                           |                                         | 6.7                                             | 75.3                                                                                                                                                           |
| 70                                                          |                   |                         |                  |                           |                                         | 4.75                                            | 72.8                                                                                                                                                           |
| 3 <sup>70</sup>                                             |                   |                         |                  |                           |                                         | 2.36                                            | 64.5                                                                                                                                                           |
| Percent Passing (%)                                         |                   |                         |                  | ×                         |                                         | 1.18                                            | 53.0                                                                                                                                                           |
| · <b>i</b> g 60                                             |                   |                         |                  |                           | + + + + + + + + + + + + + + + + + + + + | 0.60                                            | 40.5                                                                                                                                                           |
| Pas                                                         |                   |                         |                  |                           |                                         | 0.425                                           | 35.4                                                                                                                                                           |
| ti 50                                                       |                   |                         |                  |                           |                                         | 0.30                                            | 31.2                                                                                                                                                           |
| erc                                                         |                   |                         |                  |                           |                                         | 0.15                                            | 25.0                                                                                                                                                           |
|                                                             |                   |                         |                  |                           |                                         | 0.075                                           | 20.8                                                                                                                                                           |
| 40                                                          |                   |                         |                  |                           |                                         | *Particle Size (mm)                             | Percent Passing (S                                                                                                                                             |
|                                                             |                   |                         |                  |                           |                                         | 0.0701                                          | 20.5                                                                                                                                                           |
| 30                                                          |                   |                         |                  |                           | + + + + + + + + + + + + + + + + + + + + | 0.0501                                          | 18.3                                                                                                                                                           |
|                                                             |                   |                         |                  |                           | ++++++                                  | 0.0356                                          | 17.7                                                                                                                                                           |
| 20                                                          |                   |                         |                  |                           | ++++++                                  | 0.0254                                          | 16.2                                                                                                                                                           |
|                                                             |                   |                         |                  |                           |                                         | 0.0180                                          | 15.4                                                                                                                                                           |
| 10                                                          |                   |                         |                  |                           |                                         | 0.0132                                          | 14.5                                                                                                                                                           |
| 10                                                          |                   |                         |                  |                           |                                         | 0.0094                                          | 13.3                                                                                                                                                           |
|                                                             |                   |                         |                  |                           | +++++                                   | 0.0067                                          | 12.3                                                                                                                                                           |
| 0                                                           |                   |                         |                  |                           | ┵∎┴┴┤                                   | 0.0048                                          | 11.0                                                                                                                                                           |
| 0.001                                                       | 0.01              | 0.1                     | 1                | 10                        | 100                                     | 0.0034                                          | 10.2                                                                                                                                                           |
|                                                             |                   | Mətari                  | al Size (mm)     |                           |                                         | 0.0028                                          | 10.2                                                                                                                                                           |
|                                                             |                   | Match                   |                  |                           |                                         | 0.0024                                          | 9.3                                                                                                                                                            |
|                                                             |                   |                         |                  | Sched                     | ule 2.2 (a)(ii)                         | 0.0014                                          | 8.2                                                                                                                                                            |
| emarks: L                                                   | JS General Fill   |                         | An               | proved Signatory          |                                         | *Particle Size obtained I<br>Hydrometer Type: g |                                                                                                                                                                |
| echnician:                                                  |                   |                         | ,                |                           | - Laboratory Man                        |                                                 | ,<br>,                                                                                                                                                         |

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |

| 14/1 Cowpasture       | g <b>Ser</b> vices <b>P</b> ty Lt<br>Place, Wetherill Pa<br>2166 Fax: (02)97561 |                          | smectesting.com.au | I                                          |                           | Accreditation<br>with ISC<br>This Docur     | Laboratory Number: 2750<br>nent is issued in<br>e with NATA's<br>n requirements.<br>for compliance<br>v/IEC 17025.<br>nent may not be |
|-----------------------|---------------------------------------------------------------------------------|--------------------------|--------------------|--------------------------------------------|---------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                                 |                          | Particle           | e Size Distrib                             | ution                     | ▼ reproduce                                 | d except in full.                                                                                                                     |
| Proiect: ISABEL       | LA WEIR UPGRAD                                                                  | θE                       | STS                | <b>5 / S</b> ample <b>N</b> o. <b>: 54</b> | 42C/10                    | Project No.:                                | 16309                                                                                                                                 |
| Client: SMEC A        |                                                                                 |                          |                    | nple Location: TP0                         |                           | Report No.:                                 |                                                                                                                                       |
|                       | 5, 20 Berry Street, No                                                          | orth Svdnev 2060         |                    | oth (m): 3.0 - 3.4                         |                           | Report Date:                                |                                                                                                                                       |
| Fest Method: AS       | -                                                                               |                          | -                  |                                            | Mechanical Stirrer        | •                                           | 8 OF 15                                                                                                                               |
|                       |                                                                                 | lied By Client (Not co   |                    | •                                          |                           | Client Project No:                          |                                                                                                                                       |
|                       |                                                                                 | grey, trace of clay/sil  |                    |                                            |                           | Sieve Size (mm)                             | Percent Passing (%                                                                                                                    |
| atena Descrip         | don. Gravelly Sallu,                                                            | grey, trace of clay/Sill |                    |                                            |                           | 75.0                                        | 100                                                                                                                                   |
| Clay                  | Silt                                                                            |                          | Sand               | Gravel                                     |                           | 53.0                                        | 98.6                                                                                                                                  |
| 100                   |                                                                                 |                          |                    |                                            |                           | 37.5                                        | 95                                                                                                                                    |
|                       |                                                                                 |                          |                    |                                            |                           | 26.5                                        | 90.4                                                                                                                                  |
| 90                    |                                                                                 |                          |                    |                                            |                           | 19.0                                        | 86.1                                                                                                                                  |
|                       |                                                                                 |                          |                    |                                            |                           | 13.2                                        | 83.1                                                                                                                                  |
|                       |                                                                                 |                          |                    |                                            |                           | 9.5                                         | 80.6                                                                                                                                  |
| 80                    |                                                                                 |                          |                    |                                            |                           | 6.7                                         | 77.9                                                                                                                                  |
|                       |                                                                                 |                          |                    |                                            |                           | 4.75                                        | 75.2                                                                                                                                  |
| - 70                  |                                                                                 |                          |                    |                                            |                           | 2.36                                        | 67.8                                                                                                                                  |
| %                     |                                                                                 |                          | /                  |                                            |                           |                                             |                                                                                                                                       |
| b<br>B<br>B<br>C<br>D |                                                                                 |                          |                    |                                            |                           | 1.18                                        | 57.4                                                                                                                                  |
|                       |                                                                                 |                          | <b>*</b>           |                                            |                           | 0.60                                        | 45.0                                                                                                                                  |
| t Pa                  |                                                                                 |                          |                    |                                            |                           | 0.425                                       | 40.0                                                                                                                                  |
| 50                    |                                                                                 |                          |                    |                                            | -+++++++                  | 0.30                                        | 35.5                                                                                                                                  |
| Percent Passing (%)   |                                                                                 |                          |                    |                                            |                           | 0.15                                        | 28.9                                                                                                                                  |
| 40                    |                                                                                 |                          |                    |                                            |                           | 0.075                                       | 24.6                                                                                                                                  |
| -0                    |                                                                                 |                          |                    |                                            |                           | *Particle Size (mm)                         |                                                                                                                                       |
|                       |                                                                                 |                          |                    |                                            |                           | 0.0682                                      | 23.7                                                                                                                                  |
| 30                    |                                                                                 |                          |                    |                                            |                           | 0.0489                                      | 21.7                                                                                                                                  |
|                       |                                                                                 |                          |                    |                                            |                           | 0.0347                                      | 20.9                                                                                                                                  |
| 20                    |                                                                                 |                          |                    |                                            |                           | 0.0248                                      | 19.4                                                                                                                                  |
|                       |                                                                                 |                          |                    |                                            |                           | 0.0177                                      | 17.8                                                                                                                                  |
| 10                    |                                                                                 |                          |                    |                                            |                           | 0.0130                                      | 16.7                                                                                                                                  |
| 10                    |                                                                                 |                          |                    |                                            |                           | 0.0093                                      | 15.3                                                                                                                                  |
|                       |                                                                                 |                          | ┼┼┼┼┼┼             |                                            |                           | 0.0066                                      | 14.6                                                                                                                                  |
| 0 +                   |                                                                                 |                          |                    |                                            |                           | 0.0047                                      | 13.1                                                                                                                                  |
| 0.001                 | 0.01                                                                            | 0.1                      | 1                  | 10                                         | 100                       | 0.0033                                      | 13.0                                                                                                                                  |
|                       |                                                                                 | <b>1</b>                 |                    |                                            |                           | 0.0027                                      | 12.3                                                                                                                                  |
|                       |                                                                                 | Mate                     | rial Size (mm)     |                                            |                           | 0.0024                                      | 11.0                                                                                                                                  |
|                       |                                                                                 |                          |                    | 1                                          | Schedule 2.2 (a)(ii)      | 0.0014                                      | 10.5                                                                                                                                  |
| Remarks:              | Sand Fill                                                                       |                          | Apr                | proved Signatory                           |                           | *Particle Size obtained<br>Hydrometer Type: | by Hydrometer Analysis.                                                                                                               |
| echnician:            |                                                                                 |                          |                    |                                            | 2 (a)(ii) - Laboratory Ma | nager                                       |                                                                                                                                       |

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   |                                    |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |

| 14/1 Cowpasture F   | Services Pty Ltd<br>Place, Wetherill Park<br>66 Fax: (02)9756 1137 | NSW 2164<br>Email: enquiries@smectest   | ng.com.au   |                       |                                       | NATA<br>NATA<br>NATA<br>NATA<br>NACCredited<br>with ISC<br>This Docur | Laboratory Number: 2750<br>rent is issued in<br>swith NATA's<br>n requirements.<br>for compliance<br>v/IEC 17025.<br>nent may not be |
|---------------------|--------------------------------------------------------------------|-----------------------------------------|-------------|-----------------------|---------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                    | ŀ                                       | Particle S  | Size Distributio      | on                                    | <ul> <li>reproduce</li> </ul>                                         | d except in full.                                                                                                                    |
| Project: ISABELL    | A WEIR UPGRADE                                                     |                                         | STS /       | Sample No.: 5442C     | :/11                                  | Project No.:                                                          | 16309                                                                                                                                |
| Client: SMEC Aus    |                                                                    |                                         |             | e Location: TP07      |                                       | Report No.:                                                           |                                                                                                                                      |
|                     |                                                                    | 0                                       | -           |                       |                                       |                                                                       |                                                                                                                                      |
|                     | 20 Berry Street, North                                             | Sydney 2060                             |             | (m): 4.0 - 4.8        |                                       | Report Date:                                                          |                                                                                                                                      |
| Test Method: AS12   | 289.3.6.3                                                          |                                         | Metho       | d of Despersion: Me   | echanical Stirrer                     | Page:                                                                 | 9 OF 15                                                                                                                              |
| Sampling Procedu    | re: Samples Supplied                                               | By Client (Not covered un               | der NATA So | cope of Accreditation | ר)                                    | Client Project No:                                                    | 3002402                                                                                                                              |
| Material Descriptio | on: Silty Sandy Clay, ye                                           | ellow brown, trace of grave             | el          |                       |                                       | Sieve Size (mm)                                                       | Percent Passing (%)                                                                                                                  |
| Clay                | Silt                                                               | Sand                                    |             | Gravel                |                                       |                                                                       |                                                                                                                                      |
| 100                 |                                                                    |                                         |             |                       |                                       |                                                                       |                                                                                                                                      |
|                     |                                                                    |                                         |             |                       | ++++++                                |                                                                       |                                                                                                                                      |
| 90                  |                                                                    |                                         |             |                       | +++++++                               |                                                                       |                                                                                                                                      |
|                     |                                                                    |                                         |             |                       |                                       | 13.2                                                                  | 100                                                                                                                                  |
| 80                  |                                                                    |                                         |             |                       |                                       | 9.5                                                                   | 99.5                                                                                                                                 |
|                     |                                                                    |                                         |             |                       |                                       | 6.7                                                                   | 99.1                                                                                                                                 |
| 70                  |                                                                    |                                         |             |                       |                                       | 4.75                                                                  | 98.4                                                                                                                                 |
| ् <sup>70</sup>     |                                                                    |                                         |             |                       |                                       | 2.36                                                                  | 95.1                                                                                                                                 |
| Percent Passing (%) |                                                                    |                                         |             |                       |                                       | 1.18                                                                  | 87.2                                                                                                                                 |
| -iii 60             |                                                                    | +++++++++++++++++++++++++++++++++++++++ | ++          |                       |                                       | 0.60                                                                  | 79.1                                                                                                                                 |
| Pas                 |                                                                    |                                         |             |                       |                                       | 0.425                                                                 | 76.0                                                                                                                                 |
| <b>ž</b> 50         |                                                                    |                                         |             |                       |                                       | 0.30                                                                  | 73.2                                                                                                                                 |
| erce 🔸              |                                                                    |                                         |             |                       |                                       | 0.15                                                                  | 68.8                                                                                                                                 |
| _                   |                                                                    |                                         |             |                       |                                       | 0.075                                                                 | 65.8                                                                                                                                 |
| 40                  |                                                                    |                                         |             |                       |                                       | *Particle Size (mm)                                                   | Percent Passing (%)                                                                                                                  |
|                     |                                                                    |                                         |             |                       |                                       | 0.0662                                                                | 65.6                                                                                                                                 |
| 30                  |                                                                    | +++++++++++++++++++++++++++++++++++++++ | ++          |                       |                                       | 0.0470                                                                | 64.2                                                                                                                                 |
|                     |                                                                    |                                         |             |                       |                                       | 0.0333                                                                | 63.4                                                                                                                                 |
| 20                  |                                                                    |                                         |             |                       |                                       | 0.0238                                                                | 60.8                                                                                                                                 |
|                     |                                                                    |                                         |             |                       |                                       | 0.0169                                                                | 58.5                                                                                                                                 |
| 10                  |                                                                    |                                         |             |                       |                                       | 0.0124                                                                | 56.9                                                                                                                                 |
| 10                  |                                                                    |                                         |             |                       |                                       | 0.0088                                                                | 54.9                                                                                                                                 |
|                     |                                                                    |                                         |             |                       |                                       | 0.0063                                                                | 53.5                                                                                                                                 |
|                     |                                                                    |                                         |             |                       |                                       | 0.0045                                                                | 51.7                                                                                                                                 |
| 0.001               | 0.01                                                               | 0.1                                     | 1           | 10                    | 100                                   | 0.0032                                                                | 50.0                                                                                                                                 |
|                     |                                                                    | Material Size (                         | mm)         |                       |                                       | 0.0026                                                                | 50.0                                                                                                                                 |
|                     |                                                                    |                                         | ,           |                       |                                       | 0.0023                                                                | 48.3                                                                                                                                 |
|                     |                                                                    |                                         |             | So                    | chedule 2.2 (a)(ii)                   | 0.0013                                                                | 46.9                                                                                                                                 |
| Remarks:            | Clayey Fill                                                        |                                         | Approv      | ved Signatory         |                                       | *Particle Size obtained I<br>Hydrometer Type: g                       |                                                                                                                                      |
| Technician:         |                                                                    |                                         |             | Schedule 2.2 (a       | t <mark>)(ii)</mark> - Laboratory Mai | nager                                                                 |                                                                                                                                      |

| SMEC Testing Services Pty Ltd           |                                    |
|-----------------------------------------|------------------------------------|
| 14/1 Cowpasture Place, Wetherill Park   | NSW 2164                           |
| Phone: (02)9756 2166 Fax: (02)9756 1137 | Email: enquiries@smectesting.com.a |

|                                | 2)9756  | 2100 1  | αл.   | (02)     | 5750   | 1107   |           | nan          | . 01     | quine  | 3@3  | met              | 103  | ung | y.co | m.ac | 1    |     |     |         |       |             |                     |      |            | with IS<br>This Docu              | d for compliance<br>O/IEC 17025.<br>ment may not be |
|--------------------------------|---------|---------|-------|----------|--------|--------|-----------|--------------|----------|--------|------|------------------|------|-----|------|------|------|-----|-----|---------|-------|-------------|---------------------|------|------------|-----------------------------------|-----------------------------------------------------|
|                                |         |         |       |          |        |        |           |              |          |        |      |                  |      | Pa  | art  | icle | e S  | Siz | e   | Dist    | ribu  | utio        | on                  |      |            | reproduce                         | ed except in full.                                  |
| roject: I                      | SABE    |         | /EIR  | UF       | GRA    | DE     |           |              |          |        |      |                  |      |     |      | ST   | s/   | Sar | npl | e No    | : 54  | 42C         | /12                 |      |            | Project No.:                      | 16309                                               |
| lient: SI                      |         |         |       |          |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     | ition:  |       |             |                     |      |            | Report No.:                       |                                                     |
| ddress:                        |         |         |       | , Ctr    | oot    | North  |           | <i>i</i> dn  | <u> </u> | 2060   |      |                  |      |     |      |      | •    |     |     | .6 - 2. |       | 0           |                     |      |            | Report Date:                      |                                                     |
|                                |         |         | -     |          | eet,   | NOTU   | i Oy      | un           | Cy /     | 2000   |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      | 1.01       | -                                 |                                                     |
| est Meth                       |         |         |       |          |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     | inic | al Stirrer | •                                 | 10 OF 15                                            |
| ampling                        | Proce   | dure:   | Sam   | ples     | s Sup  | plied  | l By      | / Cl         | ien      | t (Not | cov  | ere              | d u  | nde | er N | ATA  | A So | cop | e o | f Acc   | edita | atior       | ר)                  |      |            | Client Project No                 | : 3002402                                           |
| laterial D                     | Descrip | tion: S | Silty | San      | dy C   | lay, t | orov      | vn,          | tra      | ce of  | grav | el               |      |     |      |      |      |     |     |         |       |             |                     |      |            | Sieve Size (mm)                   | Percent Passing                                     |
|                                | Clay    | ,       |       |          | Silt   |        |           |              |          |        | 5    | Sand             | 1    |     |      |      |      |     |     | Grav    | el    |             |                     |      |            |                                   |                                                     |
| 100                            |         | 1       |       |          |        |        | $\square$ |              |          |        |      |                  |      |     |      |      |      | -   |     |         | -     | •           |                     | 1    |            |                                   |                                                     |
|                                |         |         |       |          |        |        | $\square$ |              |          |        |      |                  |      |     |      |      | -    |     |     |         |       |             |                     |      | T .        | 26.5                              | 100                                                 |
| 90                             |         |         |       |          |        | 1      | $\square$ |              |          |        |      | $ \uparrow $     |      |     | /    |      |      |     |     |         |       |             | $\uparrow \uparrow$ |      |            | 19.0<br>13.2                      | 99.5<br>99.5                                        |
|                                |         |         |       |          |        | -      | Ħ         |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 9.5                               | 99.5                                                |
| 80                             |         |         |       |          |        | -      | $\vdash$  |              |          |        |      |                  |      |     |      |      | -    | +   |     |         |       |             |                     |      | +          | 6.7                               | 98.1                                                |
|                                |         |         |       |          |        |        | $\vdash$  | +            |          |        |      |                  |      |     |      |      | -    | +   |     |         |       |             |                     |      |            | 4.75                              | 97.7                                                |
| ्च <sup>70</sup>               |         |         |       |          |        |        | $\vdash$  |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 2.36                              | 95.2                                                |
| Percent Passing (%)<br>05 09 6 |         | -       |       |          |        | +      |           | -            | •        |        |      | ++               | ++   |     |      | _    | -    | +   |     |         |       |             | ++                  |      |            | 1.18                              | 87.3                                                |
| -i <u>j</u> 60                 |         | _       |       |          | -      |        | $\vdash$  | +            | ++-      |        |      | $\left  \right $ |      | ++  |      | _    | -    | +   |     |         |       |             | ++                  |      |            | 0.60                              | 80.4                                                |
| Pas                            |         |         |       | - 1      | -      | —      | $\vdash$  | +            |          |        |      |                  |      |     |      |      | _    | _   |     |         |       |             |                     |      |            | 0.425                             | 77.8                                                |
| j 50                           | -       |         |       |          |        |        | $\vdash$  | +            |          |        | _    | $\left  \right $ |      |     |      | _    | _    | _   |     |         |       |             | +                   |      |            | 0.30                              | 75.4                                                |
| Perc                           | _       | _       |       |          |        | —      | $\vdash$  | +            | _        |        |      | $\square$        |      |     |      |      | _    | _   |     |         |       |             | ++                  |      |            | 0.15                              | 71.0                                                |
| - 40                           |         |         |       |          |        |        | $\square$ | +            |          |        | _    |                  |      |     |      | _    | _    |     |     |         |       |             |                     |      |            | 0.075<br>*Particlo Sizo (mm)      | 67.5<br>Percent Passing                             |
|                                |         |         |       |          |        |        | $\square$ | $\downarrow$ |          |        |      |                  |      |     |      | _    | _    |     |     |         |       |             |                     |      |            | 0.0663                            | 67.3                                                |
| 30                             |         |         |       |          |        |        | $\square$ |              |          |        |      |                  |      |     |      | _    |      |     |     |         |       |             |                     |      |            | 0.0470                            | 66.4                                                |
| 20                             |         |         |       |          |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 0.0334                            | 64.6                                                |
| 20                             |         |         |       |          |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 0.0238                            | 61.5                                                |
| 20                             |         |         |       |          |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 0.0170                            | 59.6                                                |
|                                |         |         |       |          |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 0.0124                            | 58.5                                                |
| 10                             |         |         |       |          |        |        | $\square$ |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 0.0088                            | 56.4                                                |
|                                |         |         |       |          |        | -      | Ħ         |              |          |        |      |                  |      |     |      |      |      |     |     |         |       |             |                     |      |            | 0.0063                            | 54.5                                                |
| 0                              |         | -       |       | ЦЦЦ<br>А | <br>01 |        | <u> </u>  |              | <br>,    |        | 1    |                  |      |     | 1    |      |      |     | 1   | 10      | [     |             |                     |      | Щ<br>100   | 0.0045                            | 53.2                                                |
| U                              | ).001   |         |       | 0        | .01    |        |           |              | (        | ).1    |      |                  |      |     | 1    |      |      |     |     | 10      |       |             |                     |      | 100        | 0.0032                            | 52.0                                                |
|                                |         |         |       |          |        |        |           |              |          | Μ      | ater | ial S            | bize | (m  | m)   |      |      |     |     |         |       |             |                     |      |            | 0.0026                            | 52.0<br>50.3                                        |
|                                |         |         |       |          |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     |         | -     | <b>~</b> -' |                     |      |            |                                   |                                                     |
| Remarks:                       |         | -       | ayey  | _        |        |        |           |              |          |        |      |                  |      |     |      |      |      |     |     |         |       | 50          | ieau                |      | z (a)(II)  | 0.0013<br>*Particle Size obtained | 48.4                                                |

NATA Accredited Laboratory Number: 2750



14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 Fax: (02)9756 1137 Email: enquiries@smectesting.com.au

Emerson Class No.

#### Project: ISABELLA WEIR UPGRADE

Client: SMEC Australia

Address: Level 5, 20 Berry Street, North Sydney 2060

Test Method: AS1289.3.8.1

Client Request No.: 3002402

Project No.: 16309 Report No.: 15/0835 Report Date: 13/04/2015 Page: 11 of 15

NATA

NATA Accredited Laboratory Number: 2750 This document is issued in accordance with NATA's accreditation requirements.

Accredited for complian with ISO/IEC 17025

This Document may not be reproduced except in full.

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

| STS / Sample<br>No.         | 5442C/2                                        | 5442C/4                                        | 5442C/5                                                         | 5442C/6                                         | 5442C/7                                                 | 5442C/9                                        |
|-----------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|------------------------------------------------|
| Sample<br>Location          | TP03                                           | TP05 US                                        | TP05 DS                                                         | TP06                                            | TP06                                                    | TP06                                           |
| Material<br>Description     | Silty Sandy<br>Clay, brown,<br>trace of gravel | Gravelly Sand,<br>brown, trace of<br>silt/clay | Silty Sandy<br>Clay, brown,<br>yellow brown,<br>trace of gravel | Silty Gravelly<br>Sand, brown,<br>trace of clay | Silty Sandy<br>Clay, light<br>brown, trace of<br>gravel | Gravelly Sand,<br>brown, trace of<br>clay/silt |
| Depth (mm)                  | 1.5 - 1.9                                      | 1.5 - 2.5                                      | 1.5 - 2.5                                                       | 0.5 - 1.0                                       | 1.0 - 1.6                                               | 2.0 - 2.5                                      |
| Sample Date                 | 18/03/2015                                     | 18/03/2015                                     | 18/03/2015                                                      | 18/03/2015                                      | 18/03/2015                                              | 18/03/2015                                     |
| Date Tested                 | 2/04/2015                                      | 2/04/2015                                      | 2-Apr-15                                                        | 2-Apr-15                                        | 2-Apr-15                                                | 2-Apr-15                                       |
| Source of<br>Material       | Disturbed                                      | Disturbed                                      | Disturbed                                                       | Disturbed                                       | Disturbed                                               | Disturbed                                      |
| Water<br>Temperature<br>(°) | 22                                             | 22                                             | 22                                                              | 22                                              | 22                                                      | 22                                             |
| Emerson Class<br>No.        | 1                                              | 1                                              | 1                                                               | 1                                               | 1                                                       | 4                                              |

Emerson Classification

Class 1: Slaking and complete dispersion before remoulding

Class 2: Slaking and some dispersion before remoulding

Class 3: Slaking and no dispersion before remoulding, dispersion after remoulding

Class 4: Slaking and no despersion before remoulding, no dispersion after remoulding, calcite or gypsum present

Class 5: Slaking and no dispersion before remoulding, no dispersion after remoulding, no calcite or gypsum present, dispersion after slaking in a 1:5 soil / water suspension

Class 6: Slaking and no dispersion before remoulding, no dispersion after remoulding, no calcite or gypsum present, flocculation after shaking in a 1:5 soil / water suspension

Class 7: No slaking, swelling occurs

Class 8: No slaking, swelling does not occur

Remarks:

Technician:

Approved Signatory....

Schedule 2.2 (a)(ii)</mark>- Laboratory Manager



14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 Fax: (02)9756 1137 Email: enquiries@smectesting.com.au

| Emerson | Class | No. |
|---------|-------|-----|
|---------|-------|-----|

#### Project: ISABELLA WEIR UPGRADE

Client: SMEC Australia

Address: Level 5, 20 Berry Street, North Sydney 2060

Test Method: AS1289.3.8.1

Client Request No.: 3002402

Project No.: 16309 Report No.: 15/0835 Report Date: 13/04/2015 Page: 12 of 15

NATA

NATA Accredited Laboratory Number: 2750 This document is issued in accordance with NATA's accreditation requirements.

Accredited for complian with ISO/IEC 17025

This Document may not be reproduced except in full.

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

| STS / Sample<br>No.         | 5442C/11                                                 | 5442C/12                                       |  |  |
|-----------------------------|----------------------------------------------------------|------------------------------------------------|--|--|
| Sample<br>Location          | TP07                                                     | TP08                                           |  |  |
| Material<br>Description     | Silty Sandy<br>Clay, yellow<br>brown, trace of<br>gravel | Silty Sandy<br>Clay, brown,<br>trace of gravel |  |  |
| Depth (mm)                  | 4.0 - 4.8                                                | 1.6 - 2.0                                      |  |  |
| Sample Date                 | 19/03/2015                                               | 19/03/2015                                     |  |  |
| Date Tested                 | 2/04/2015                                                | 2/04/2015                                      |  |  |
| Source of<br>Material       | Disturbed                                                | Disturbed                                      |  |  |
| Water<br>Temperature<br>(°) | 22                                                       | 22                                             |  |  |
| Emerson Class<br>No.        | 1                                                        | 1                                              |  |  |

Emerson Classification

Class 1: Slaking and complete dispersion before remoulding

Class 2: Slaking and some dispersion before remoulding

Class 3: Slaking and no dispersion before remoulding, dispersion after remoulding

Class 4: Slaking and no despersion before remoulding, no dispersion after remoulding, calcite or gypsum present

Class 5: Slaking and no dispersion before remoulding, no dispersion after remoulding, no calcite or gypsum present, dispersion after slaking in a 1:5 soil / water suspension

Class 6: Slaking and no dispersion before remoulding, no dispersion after remoulding, no calcite or gypsum present, flocculation after shaking in a 1:5 soil / water suspension

Class 7: No slaking, swelling occurs

Class 8: No slaking, swelling does not occur

Remarks:

Technician:

Approved Signatory.....

Schedule 2.2 (a)(ii) - Laboratory Manager

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 Fax: (02)9756 1137 Email: enquiries@smectesting.com.au

NATA Accredited Laboratory Number: 2750 This document is issued in accordance with NATA's accreditation requirements. NATA

Project No.: 16309

Report Date: 13/04/2015

Page: 13 of 15

Report No.:

Accredited for compliance with ISO/IEC 17025.

This Document may not be reproduced except in full.

15/0835

Atterberg Limits and Linear Shrinkage Report

Project: ISABELLA WEIR UPGRADE Client: SMEC Australia

Address: Level 5, 20 Berry Street, North Sydney 2060

Test Method: AS1289.3.1.1, 3.2.1, 3.3.1, 3.4.1, 2.1.1

Client Request No.: 3002402

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

| STS / Sample<br>No.                | 5442C/2                                        | 5442C/4                                        | 5442C/5                                                         | 5442C/6                                         | 5442C/7                                                 | 5442C/9                                        |
|------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|------------------------------------------------|
| Sample<br>Location                 | TP03                                           | TP05 US                                        | TP05 DS                                                         | TP06                                            | TP06                                                    | TP06                                           |
| Material<br>Description            | Silty Sandy<br>Clay, brown,<br>trace of gravel | Gravelly Sand,<br>brown, trace of<br>silt/clay | Silty Sandy<br>Clay, brown,<br>yellow brown,<br>trace of gravel | Silty Gravelly<br>Sand, brown,<br>trace of clay | Silty Sandy<br>Clay, light<br>brown, trace of<br>gravel | Gravelly Sand,<br>brown, trace of<br>clay/silt |
| Depth (m)                          | 1.5 - 1.9                                      | 1.5 - 2.5                                      | 1.5 - 2.5                                                       | 0.5 - 1.0                                       | 1.0 - 1.6                                               | 2.0 - 2.5                                      |
| Sample Date                        | 18/03/2015                                     | 18/03/2015                                     | 18/03/2015                                                      | 18/03/2015                                      | 18/03/2015                                              | 18/03/2015                                     |
| Sample<br>History                  | Air Dried                                      | Air Dried                                      | Air Dried                                                       | Air Dried                                       | Air Dried                                               | Air Dried                                      |
| Method of<br>Preparation           | Dry Sieved                                     | Dry Sieved                                     | Dry Sieved                                                      | Dry Sieved                                      | Dry Sieved                                              | Dry Sieved                                     |
| Liqui <b>d</b> Limit<br>(%)        | 72                                             | 40                                             | 75                                                              | 29                                              | 71                                                      | 27                                             |
| Plastic Limit<br>(%)               | 19                                             | 13                                             | 21                                                              | 12                                              | 19                                                      | 13                                             |
| Plasticity<br>In <b>d</b> ex       | 53                                             | 27                                             | 54                                                              | 17                                              | 52                                                      | 14                                             |
| Linea <b>r</b><br>Shrinkage<br>(%) | 15                                             | 10                                             | 16                                                              | 6                                               | 15.5                                                    | 7                                              |
| Mould Size<br>(mm)                 | 250                                            | 250                                            | 250                                                             | 250                                             | 250                                                     | 250                                            |
| Crumbing                           | Y                                              | Y                                              | Y                                                               | Ν                                               | Y                                                       | N                                              |
| Curling                            | Ν                                              | Y                                              | Ν                                                               | Y                                               | N                                                       | N                                              |
| Remarks:                           |                                                | 1                                              |                                                                 |                                                 | 1                                                       | 1                                              |

Approved Signatory...

Technician

Form RPS13

Revision: 9

Laboratory Manager

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 Fax: (02)9756 1137 Email: enquiries@smectesting.com.au



NATA Accredited Laboratory Number: 2750 This document is issued in accordance with NATA's accreditation requirements.

Atterberg Limits and Linear Shrinkage Report

Project: ISABELLA WEIR UPGRADE Client: SMEC Australia Address: Level 5, 20 Berry Street, North Sydney 2060 Test Method: AS1289.3.1.1, 3.2.1, 3.3.1, 3.4.1, 2.1.1

Project No.: 16309 Report No.: 15/0835 Report Date: 13/04/2015 Page: 14 of 15

Client Request No.: 3002402

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

| STS / Sample<br>No.                | 5442C/11                                                 | 5442C/12                                       |                |                  |               |
|------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------|------------------|---------------|
| Sample<br>Location                 | TP07                                                     | TP08                                           |                |                  |               |
| Material<br>Description            | Silty Sandy<br>Clay, yellow<br>brown, trace of<br>gravel | Silty Sandy<br>Clay, brown,<br>trace of gravel |                |                  |               |
| Depth (m)                          | 4.0 - 4.8                                                | 1.6 - 2.0                                      |                |                  |               |
| Sample Date                        | 19/03/2015                                               | 19/03/2015                                     |                |                  |               |
| Sample<br>History                  | Air Dried                                                | Air Dried                                      |                |                  |               |
| Method of<br>Preparation           | Dry Sieved                                               | Dry Sieved                                     |                |                  |               |
| Liqui <b>d L</b> imit<br>(%)       | 68                                                       | 69                                             |                |                  |               |
| Plastic Limit<br>(%)               | 20                                                       | 20                                             |                |                  |               |
| Plasticity<br>Index                | 48                                                       | 49                                             |                |                  |               |
| Linea <b>r</b><br>Shrinkage<br>(%) | 16                                                       | 16                                             |                |                  |               |
| Mould Size<br>(mm)                 | 250                                                      | 250                                            |                |                  |               |
| Crumbing                           | Y                                                        | Y                                              |                |                  |               |
| Curling                            | Ν                                                        | Ν                                              |                |                  |               |
| Remarks:                           |                                                          |                                                | Approved Signa | -                |               |
| Technician:                        | Schedul                                                  |                                                | Schedule 2.2   | (a)(ii) - Labora | atory Manager |

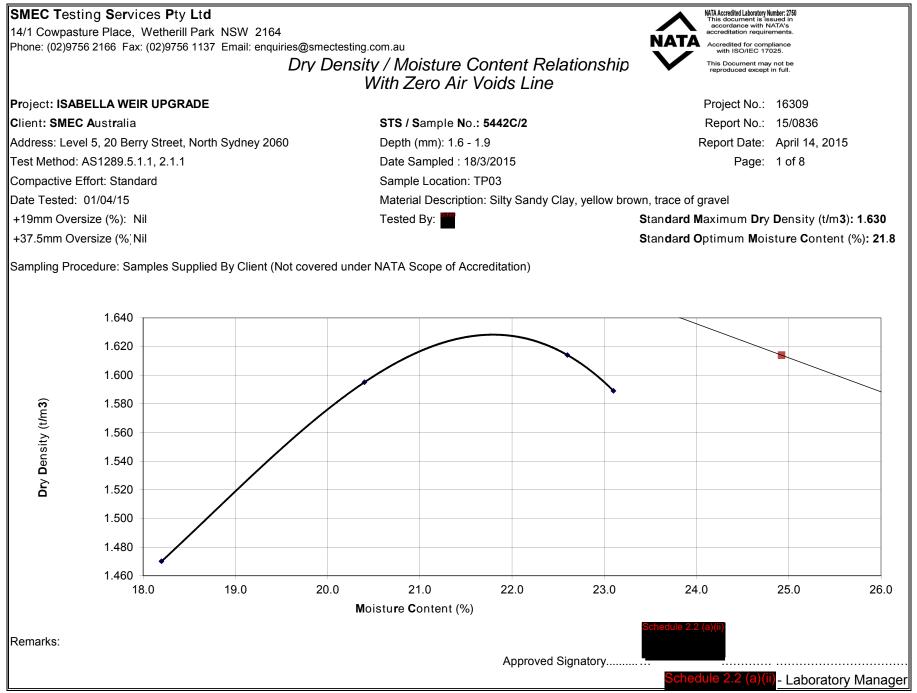
Form RPS13

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 Fax: (02)9756 1137 Email: enquiries@smectesting.com.au NATA Accredited Laboratory Number: 2750 This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This Document may not be reproduced except in full.

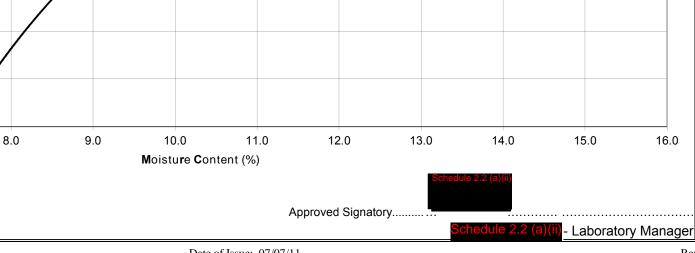
# Moisture Content of Soil and Aggregate Samples

# Project: ISABELLA WEIR UPGRADEProject No.:16309Client: SMEC AustraliaReport No.:15/0835Address: Level 5, 20 Berry Street, North Sydney 2060Report Date:13/04/2015Test Method: AS1289.2.1.1Page:15 of 15Client Request No.:3002402Page:15 of 15

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)


| STS / Sample<br>No.              | 5442C/3                                                 | 5442C/10                                      |  |  |
|----------------------------------|---------------------------------------------------------|-----------------------------------------------|--|--|
| Sample<br>Location               | TP04                                                    | TP07                                          |  |  |
| Material<br>Description          | Silty Gravelly<br>Sand, grey<br>brown, trace of<br>clay | Gravelly Sand,<br>grey, trace of<br>clay/silt |  |  |
| Depth (mm)                       | 2.3 - 2.6                                               | 3.0 - 3.4                                     |  |  |
| Sample Date                      | 18/03/2015                                              | 19/03/2015                                    |  |  |
| Moistu <b>r</b> e<br>Content (%) | 18.7                                                    | 12.9                                          |  |  |

Remarks:


Approved Signatory.....

Schedule 2.2 (a)(ii)</mark>- Laboratory Manager

Technician



#### 1200 SMEC Testing Services Pty Ltd 14/1 Cowpasture Place, Wetherill Park NSW 2164 NATA Phone: (02)9756 2166 Fax: (02)9756 1137 Email: enquiries@smectesting.com.au Dry Density / Moisture Content Relationship With Zero Air Voids Line Project: ISABELLA WEIR UPGRADE Client: SMEC Australia STS / Sample No.: 5442C/4 Address: Level 5, 20 Berry Street, North Sydney 2060 Depth (mm): 1.5 - 2.5 Test Method: AS1289.5.1.1, 2.1.1 Date Sampled : 18/3/2015 Compactive Effort: Standard Sample Location: TP05 US Material Description: Silty Gravelly Sand, grey brown, trace of clay Date Tested: 01/04/15 +19mm Oversize (%): Nil Tested By: Standard Maximum Dry Density (t/m3): 1.982 +37.5mm Oversize (%) Nil Standard Optimum Moisture Content (%): 11.1 Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation) 1.980 1.930 Dry Density (t/m3) 1.880 1.830



Remarks:

1.780

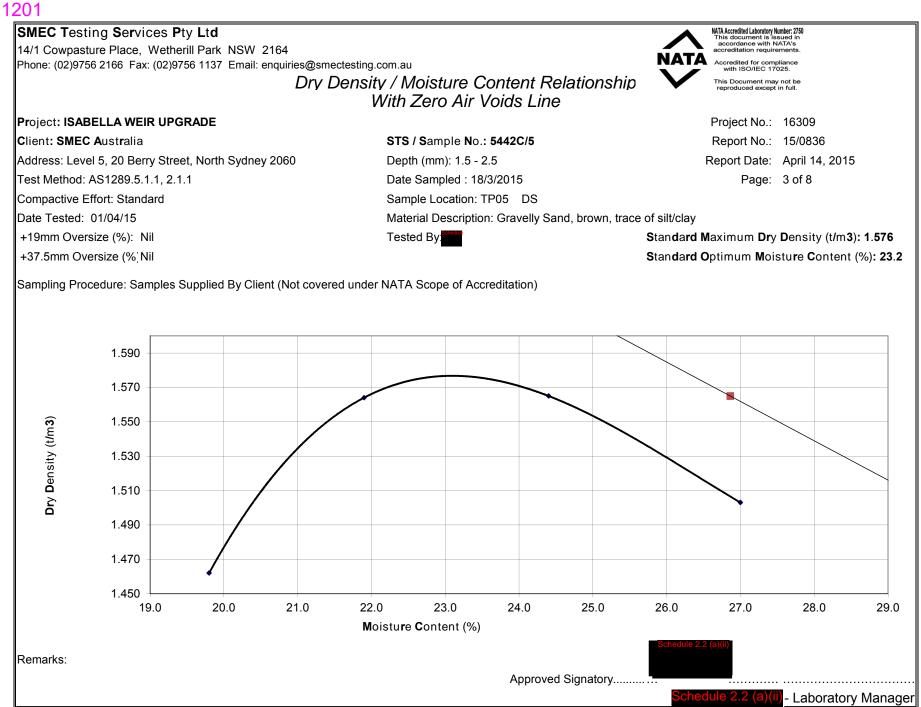
1.730

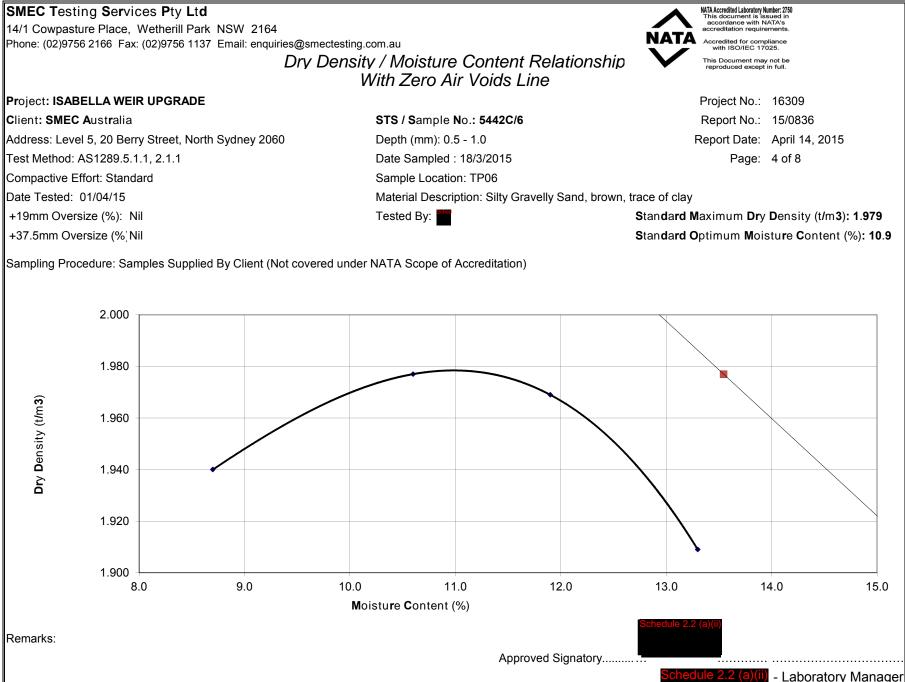
7.0

US

NATA Accredited Laboratory Number: 2750 This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance


with ISO/IEC 17025


This Document may not be oduced except in ful

Project No.: 16309

Report No.: 15/0836 Report Date: April 14, 2015

Page: 2 of 8



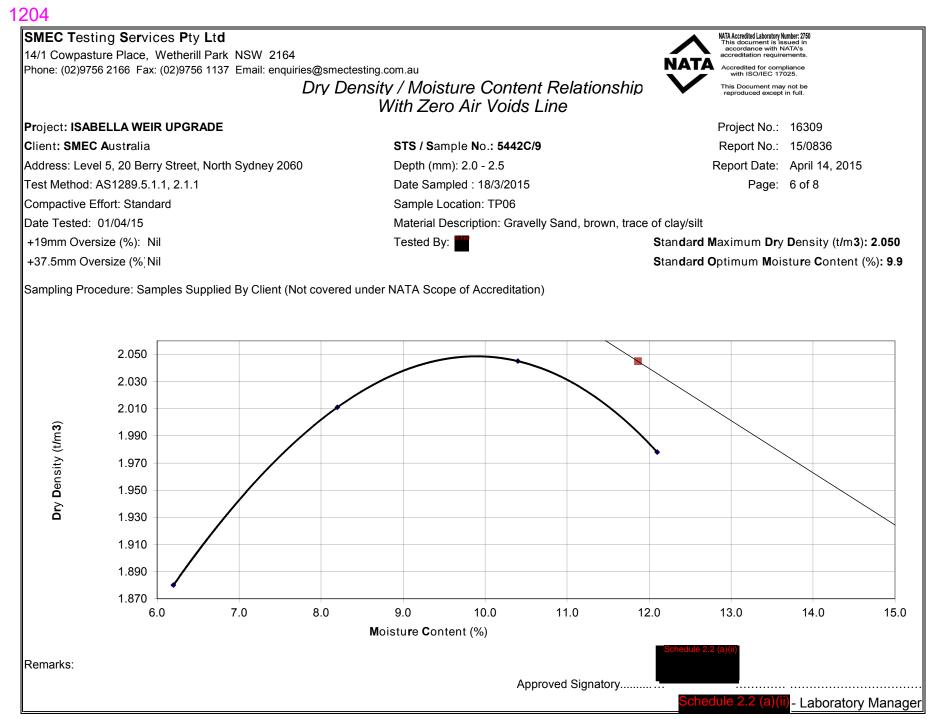


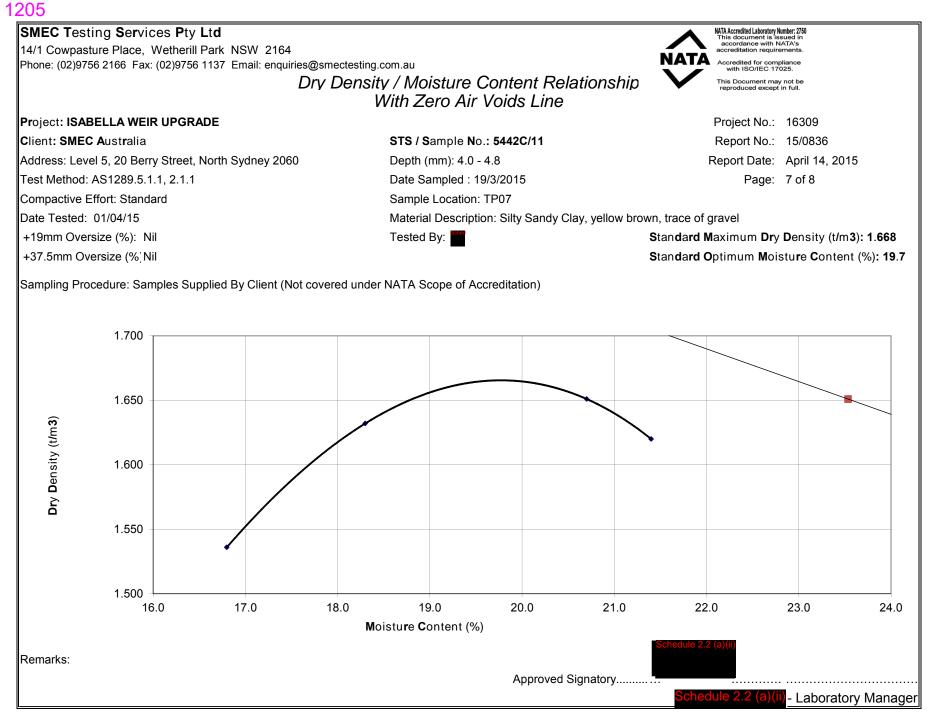
Form: RPS18

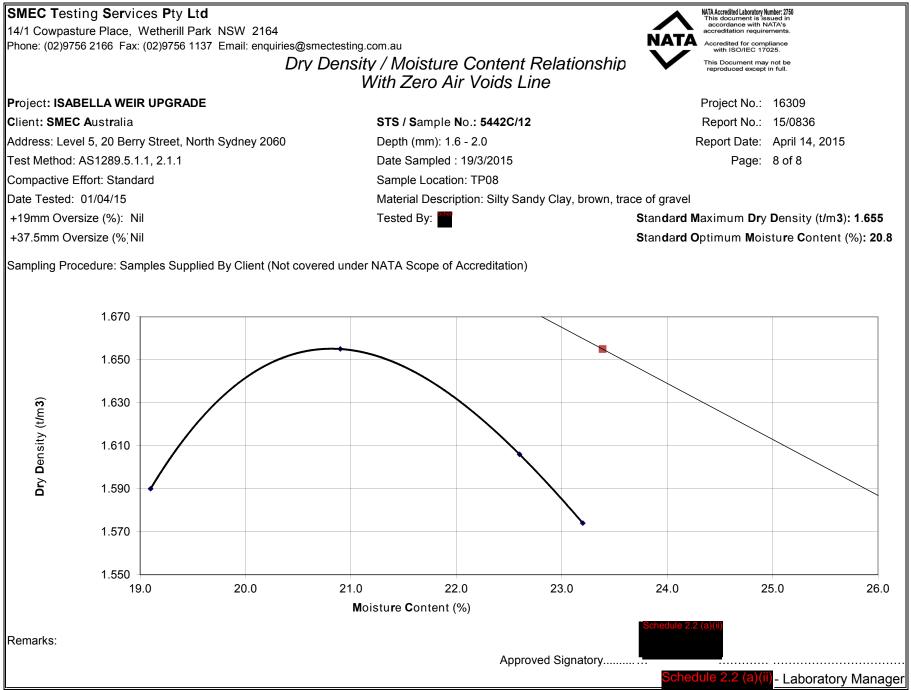
#### SMEC Testing Services Pty Ltd NATA Accredited Laboratory Number: 2750 This document is issued in accordance with NATA's accreditation requirements. 14/1 Cowpasture Place, Wetherill Park NSW 2164 NATA Accredited for compliance Phone: (02)9756 2166 Fax: (02)9756 1137 Email: enquiries@smectesting.com.au with ISO/IEC 17025 Dry Density / Moisture Content Relationship This Document may not be oduced except in ful With Zero Air Voids Line Project: ISABELLA WEIR UPGRADE Project No.: 16309 Client: SMEC Australia STS / Sample No.: 5442C/7 Report No.: 15/0836 Address: Level 5, 20 Berry Street, North Sydney 2060 Depth (mm): 1.0 - 1.6 Report Date: April 14, 2015 Page: 5 of 8 Test Method: AS1289.5.1.1, 2.1.1 Date Sampled : 18/3/2015 Compactive Effort: Standard Sample Location: TP06 Material Description: Silty Sandy Clay, light brown, trace of gravel Date Tested: 01/04/15 +19mm Oversize (%): Nil Tested By: +37.5mm Oversize (%) Nil Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation) 1.700 1.650 Dry Density (t/m3) 1.600 1.550 1.500 15.0 16.0 17.0 18.0 19.0 20.0 21.0 23.0 24.0 22.0 Moisture Content (%)

Remarks:

Approved Signatory.....

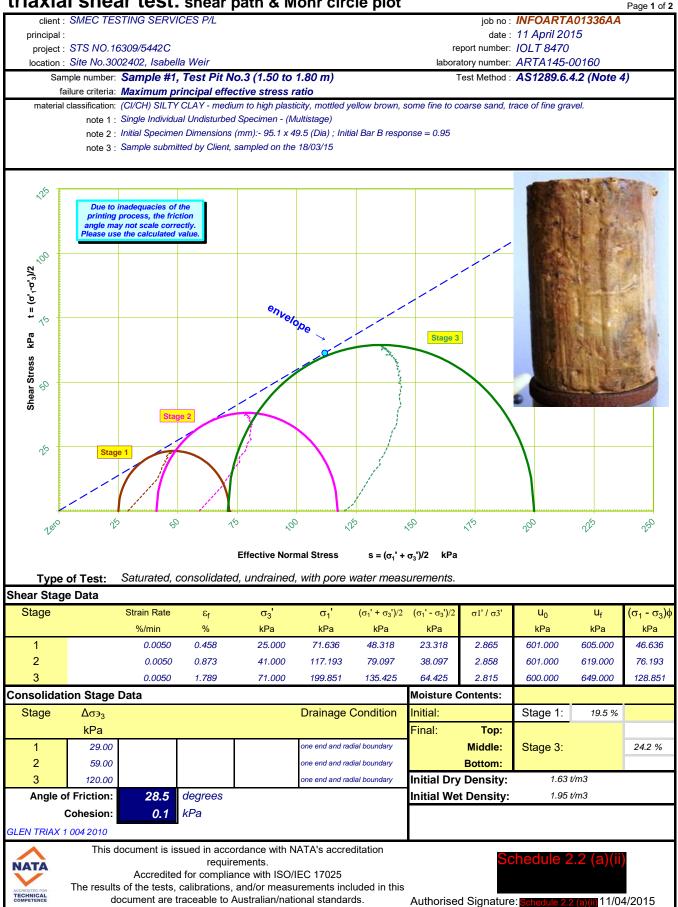

25.0


Laboratory Manager


#### 1203

Standard Maximum Dry Density (t/m3): 1.688 Standard Optimum Moisture Content (%): 19.5

e 2.2 (a










#### triaxial shear test: shear path & Mohr circle plot



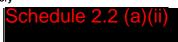


| iaxial sh                                                                                                                                                   | TESTING SER                                         |                                         |                 |                                    |                                                                                                                |                                     | ich no i     | INFOARTA        |              | Page <b>2</b>  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|-----------------|--------------|----------------|
|                                                                                                                                                             | IESTING SER                                         | VICES P/L                               |                 |                                    |                                                                                                                |                                     |              |                 |              |                |
| principal :                                                                                                                                                 |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              | 11 April 20     | 15           |                |
| project : STS N                                                                                                                                             |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              | IOLT 8470       |              |                |
| location : Site No                                                                                                                                          |                                                     |                                         | 0 (1 50 1       | ( 00 )                             |                                                                                                                |                                     | -            | ARTA145-0       |              |                |
| -                                                                                                                                                           | ber: Sample #1                                      |                                         | •               |                                    |                                                                                                                |                                     | est Method : | AS1289.6.4.     | 2 (Note 4)   |                |
| Material Classificat                                                                                                                                        | eria: <i>Maximum</i>                                |                                         |                 |                                    | led vellow bro                                                                                                 | wn some find                        | to coarse sa | nd trace of fin | e aravel     |                |
|                                                                                                                                                             | e 1 : Single Indivi                                 |                                         |                 |                                    | -                                                                                                              |                                     | 10 000/00 00 |                 | o gravoi.    |                |
|                                                                                                                                                             | 2 : Initial Specir                                  |                                         | -               |                                    |                                                                                                                | response = 0.                       | 95           |                 |              |                |
| note                                                                                                                                                        | 3 : Sample sub                                      | mitted by Clier                         | it, sampled o   | n the 18/03/15                     | 5                                                                                                              |                                     |              |                 |              |                |
|                                                                                                                                                             |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              |                 |              |                |
|                                                                                                                                                             |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              |                 |              |                |
| () F                                                                                                                                                        |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              |                 |              | 15             |
| ,5 <sup>0</sup>                                                                                                                                             |                                                     |                                         | 0               |                                    |                                                                                                                | stage 3                             |              |                 | <b>-</b> 0 1 | 10             |
|                                                                                                                                                             |                                                     |                                         | Ŭ               |                                    |                                                                                                                | ongo o                              |              |                 | Ť.           | ళా             |
|                                                                                                                                                             |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              |                 | - 1          | \$             |
| R.F.                                                                                                                                                        |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              |                 | 1            |                |
|                                                                                                                                                             |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              |                 | 1            | <sub>ن</sub> ه |
| <b>a a</b>                                                                                                                                                  |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              | 00.07           |              | ŝ              |
| Deviator Stress kPa                                                                                                                                         |                                                     | <b></b>                                 | stage 2         |                                    | ſ                                                                                                              |                                     | ,//          |                 | · 1          | NS 1           |
| s                                                                                                                                                           |                                                     |                                         |                 |                                    |                                                                                                                | ,                                   |              |                 |              | 20             |
| stre                                                                                                                                                        |                                                     |                                         |                 |                                    |                                                                                                                | 2 <sup>12</sup>                     |              |                 | 1            | ςς<br>γ        |
| b l                                                                                                                                                         |                                                     |                                         |                 |                                    | and a second                                                                                                   |                                     |              |                 | 1            | <sup>'5°</sup> |
|                                                                                                                                                             | stage 1                                             | <u> </u>                                |                 |                                    | de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la |                                     |              |                 |              | <sup>2</sup> O |
| ă                                                                                                                                                           |                                                     |                                         |                 |                                    | f                                                                                                              |                                     |              |                 | ·            | S & S & S &    |
| 68                                                                                                                                                          |                                                     | 7                                       |                 | 1 1                                |                                                                                                                |                                     |              |                 | 1            | ∿° °           |
|                                                                                                                                                             |                                                     |                                         |                 | 1/                                 |                                                                                                                |                                     |              |                 | 1            | , so           |
|                                                                                                                                                             |                                                     |                                         | and a start     |                                    |                                                                                                                |                                     |              |                 |              | ~              |
| 12                                                                                                                                                          |                                                     |                                         |                 |                                    |                                                                                                                |                                     |              |                 | 1            | ~              |
|                                                                                                                                                             | , <mark></mark>                                     | - Land                                  |                 | 1                                  |                                                                                                                |                                     |              |                 | +            | \$             |
| 0                                                                                                                                                           |                                                     | 1                                       |                 | (                                  |                                                                                                                |                                     |              |                 | 0            | )              |
| 1 <sup>er0</sup>                                                                                                                                            | 0.20% 0.40                                          | 0,00%                                   | 0.80            | 10 1.00 °/c                        | 1,20°%                                                                                                         | , <sup>AO</sup> 0/0                 | 1.60°%       | × 800%          | 2.00%        |                |
|                                                                                                                                                             | 0.0                                                 | 0,0                                     | 0,0             | ×,9                                | N.L                                                                                                            | N.º                                 | N.9          | N.9             | 2,9          |                |
|                                                                                                                                                             |                                                     |                                         |                 | Axia                               | l Strain                                                                                                       |                                     |              |                 |              |                |
| T                                                                                                                                                           | Caturatas                                           |                                         | a al sua alua i | n a al susitia na a                |                                                                                                                |                                     | 10           |                 |              |                |
| Type of Test<br>ear Stage Data                                                                                                                              | : Saluraleu                                         | , consolidat                            | eu, unurali     | ned, with po                       | ne water m                                                                                                     | leasuremer                          | Back Pres    | sure:           |              |                |
| Stage                                                                                                                                                       | Strain Rate                                         | ٤ <sub>f</sub>                          | σ3'             | u <sub>o</sub>                     | u <sub>f</sub>                                                                                                 | (σ <sub>1</sub> - σ <sub>3</sub> )φ |              |                 | 600.0 kPa    |                |
|                                                                                                                                                             | %/min                                               | %                                       | kPa             | kPa                                |                                                                                                                | kPa                                 | Cell Press   | sure(s):        |              |                |
| 1                                                                                                                                                           | 0.0050                                              | 0.458                                   | 25.000          | 601.000                            | 605.000                                                                                                        | 46.636                              |              | Stage 1:        | 630.0 kPa    |                |
| 2                                                                                                                                                           | 0.0050                                              | 0.873                                   | 41.000          | 601.000                            | 619.000                                                                                                        | 76.193                              |              | Stage 2:        | 660.0 kPa    |                |
| 3                                                                                                                                                           | 0.0050                                              | 1.789                                   | 71.000          | 600.000                            | 649.000                                                                                                        | 128.851                             |              | Stage 3:        | 720.0 kPa    |                |
| nsolidation Sta                                                                                                                                             | ge Data                                             |                                         |                 |                                    |                                                                                                                | Moisture                            | Contents:    |                 |              |                |
| Stage Δσ϶                                                                                                                                                   | 3                                                   |                                         |                 | Drainage (                         | Condition                                                                                                      | Initial:                            |              | Stage 1:        | 19.5 %       |                |
| Stage $\Delta \sigma_{2}$                                                                                                                                   |                                                     |                                         |                 |                                    |                                                                                                                | Final:                              | Тор:         |                 |              |                |
| kPa                                                                                                                                                         | 00                                                  |                                         |                 | one end and radi                   | al boundary                                                                                                    |                                     | Middle:      | Stage 3:        |              | 24.2           |
|                                                                                                                                                             |                                                     |                                         |                 | one end and radi                   | al boundary                                                                                                    |                                     | Bottom:      |                 |              |                |
| kPa                                                                                                                                                         | 00                                                  |                                         |                 | one end and radi                   | al boundary                                                                                                    | Initial Dry                         | Density:     | 1.63            | t/m3         |                |
| kPa           1         29.                                                                                                                                 | 00                                                  |                                         |                 |                                    |                                                                                                                | Initial We                          | t Density:   | 1.95            | t/m3         |                |
| kPa<br>1 29.<br>2 59.                                                                                                                                       | 00                                                  | degrees                                 |                 |                                    |                                                                                                                |                                     |              |                 |              |                |
| kPa           1         29.           2         59.           3         120.                                                                                | 00<br>on: <b>28.5</b>                               | degrees<br>kPa                          |                 |                                    |                                                                                                                |                                     |              |                 |              |                |
| kPa           1         29.           2         59.           3         120.                                                                                | 00<br>on: <b>28.5</b><br>on: <b>0.1</b>             |                                         |                 |                                    |                                                                                                                |                                     |              |                 |              |                |
| kPa           1         29.           2         59.           3         120.           Angle of Frictic         Cohesic           Cohesic         Cohesic   | 00<br>on: 28.5<br>on: 0.1                           | kPa                                     |                 | J <sup>14</sup> - 4 <sup>5</sup> - |                                                                                                                |                                     |              |                 |              |                |
| 1     29.       2     59.       3     120.   Angle of Frictic Cohesic EN TRIAX 2 004 201 This doo This doo                                                  | 00<br>pn: 28.5<br>pn: 0.1<br>10<br>cument is issued | kPa<br>in accordance                    |                 |                                    | requirements                                                                                                   |                                     | Sc           | hedule 2        | .2 (a)(ii)   |                |
| kPa           1         29           2         59           3         120           Angle of Frictic           Cohesic           Cohesic           This doc | 00<br>pn: 28.5<br>pn: 0.1<br>10<br>cument is issued | kPa<br>in accordance<br>red for complia | nce with ISO    | /IEC 17025                         | •                                                                                                              |                                     | Sc           | hedule 2        | .2 (a)(ii)   |                |



| client: SMEC T                    | -        | hole dispersion                                                          | ich number:                                | INFOARTA01236AA                                    |
|-----------------------------------|----------|--------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| chent. SMECT                      | LSTING   | SERVICES F/L                                                             | job humber.                                | INFOARTAUTZJUAA                                    |
| principal:                        |          |                                                                          |                                            |                                                    |
| project: STS No.                  | . 16309/ | 5442C                                                                    | laboratory:                                | Artarmon                                           |
|                                   |          |                                                                          | report date:                               | 11 April 2015                                      |
|                                   |          | 2 - Isabella Weir                                                        | Report No.                                 | IOLT 8472                                          |
| test procedure:                   | AS12     | 289.3.8.3                                                                | test date:                                 | 11 April 2015                                      |
| Sample                            |          | Sample                                                                   | e #1, Test Pit No.3 (1                     | 1.50 to 1.80 m)                                    |
| Identification                    |          |                                                                          | ARTA15S-0016                               | 60                                                 |
| CLASSIFICATION                    |          |                                                                          |                                            |                                                    |
| Designation                       |          |                                                                          | D1                                         |                                                    |
| Description                       |          |                                                                          | Highly Dispersi                            | ive                                                |
| BEFORE TEST                       |          |                                                                          |                                            |                                                    |
| Moisture Content<br>(as received) | %        |                                                                          | 19.5                                       |                                                    |
| Dry Density<br>(as received)      | t/m3     |                                                                          | 1.63                                       |                                                    |
| Time of Curing                    |          |                                                                          | 2 days                                     |                                                    |
| Source of Water                   |          |                                                                          | Distilled                                  |                                                    |
| Material Description              |          |                                                                          | dium to high plastic<br>coarse sand, trace | ity, mottled yellow brown, some<br>of fine gravel. |
|                                   |          |                                                                          |                                            |                                                    |
|                                   |          |                                                                          |                                            |                                                    |
|                                   |          |                                                                          |                                            |                                                    |
|                                   |          |                                                                          |                                            |                                                    |
|                                   |          | as received' Wet Density and 'as re<br>m Client, sampled on the 18/03/15 | ceived' Moisture Content                   | 2.                                                 |
|                                   |          |                                                                          |                                            |                                                    |

F:\INFO\01. Laboratory\01 - INFOLCOV Jobs\INFOARTA 01336AA - ISABELLA WEIR\[TP3\_1.5-1.80\_Pinhole.xls]report 1




This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/national Associate/Laboratory Manager

NATA Accredited Laboratory

Approved Signatory:

No 431



GLEN-PINHOLE-RPT-002-2013



triaxial shear test: shear path & Mohr circle plot

Page 1 of 2

#### client : SMEC TESTING SERVICES P/L job no : INFOARTA01336AA principal : date : 11 April 2015 project : STS NO.16309/5442C report number: IOLT 8471 location : Site No.3002402, Isabella Weir laboratory number: ARTA145-00161 Sample number: Sample #8, Test Pit No.6 (1.60 to 1.95 m) Test Method : AS1289.6.4.2 (Note 4) failure criteria: Maximum principal effective stress ratio material classification: (CI/CH) SILTY CLAY - medium to high plasticity, mottled yellow brown, some fine to coarse sand, trace of fine gravel. note 1 : Single Individual Undisturbed Specimen - (Multistage) note 2 : Initial Specimen Dimensions (mm):- 95.2 x 49.2 (Dia) ; Initial Bar B response = 0.95 note 3 : Sample submitted by Client, sampled on the 18/03/15 25 Due to inadequacies of the printing process, the friction angle may not scale correctly Please use the calculated value ,00 t = (ơ',-ơ'₃)/2 envelope 15 Shear Stress kPa Stage 3 3 Stage Ś 1.ero 25 ý 50 15 0, ,50 15 200 25 150 **Effective Normal Stress** $s = (\sigma_1' + \sigma_3')/2$ kPa Saturated, consolidated, undrained, with pore water measurements. Type of Test: Shear Stage Data Stage Strain Rate $(\sigma_1' + \sigma_3')/2$ $(\sigma_1' - \sigma_3')/2$ $\sigma_2$ $\sigma_1'$ σ1'/σ3' u<sub>0</sub> Uf $(\sigma_1 - \sigma_3)$ ε<sub>f</sub> kPa kPa kPa kPa %/min % kPa kPa kPa 1 0.0050 0.591 19.000 69.953 44.476 25.476 3.682 602.000 611.000 50.953 2 0.0050 1.388 35.000 113.799 74.400 39.400 3.251 600.000 625.000 78.799 3 0.0050 2.416 74.000 204.473 139.237 65.237 2 763 601.000 646.000 130.473 **Consolidation Stage Data** Moisture Contents: Stage **Drainage Condition** Initial: Stage 1: 21.6 % Δσ϶₃ kPa Final: Top: one end and radial boundary 28.00 Middle: 23.9 % 1 Stage 3: 2 60.00 ne end and radial boundary Bottom: 1.57 t/m3 3 119.00 one end and radial boundarv Initial Dry Density: Angle of Friction: degrees Initial Wet Density: 1.91 t/m3 27.5 kPa Cohesion: 5.4 GLEN TRIAX 1 004 2010 This document is issued in accordance with NATA's accreditation chedule 2.2 (a)(ii requirements. NATA Accredited for compliance with ISO/IEC 17025 The results of the tests, calibrations, and/or measurements included in this TECHNICAL document are traceable to Australian/national standards. 11/04/2015 Authorised Signature: Sch



| aliant SMEC                                                                                                                                                                                        | ear test                                                      |                                                            |                               |                                                    |                                           |                                     | ich no i               | INFOARTA                 |                                        | Page <b>2</b>                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|-------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------|------------------------|--------------------------|----------------------------------------|----------------------------------------|
|                                                                                                                                                                                                    | ILSTING SLIV                                                  | VICES F/L                                                  |                               |                                                    |                                           |                                     |                        |                          |                                        |                                        |
| principal :<br>project : STS NO                                                                                                                                                                    | 0 16000/54400                                                 |                                                            |                               |                                                    |                                           |                                     |                        | 11 April 20<br>IOLT 8471 | 15                                     |                                        |
| location : Site No                                                                                                                                                                                 |                                                               |                                                            |                               |                                                    |                                           |                                     |                        | ARTA145-0                | 00161                                  |                                        |
|                                                                                                                                                                                                    |                                                               |                                                            | - C /4 CO 4-                  | 1.05 m)                                            |                                           |                                     | -                      |                          |                                        |                                        |
|                                                                                                                                                                                                    | ber: Sample #8                                                | ·                                                          |                               |                                                    |                                           |                                     | est method :           | AS1289.6.4.              | 2 (Note 4)                             |                                        |
|                                                                                                                                                                                                    | eria: <i>Maximum</i>                                          |                                                            |                               |                                                    |                                           | C.                                  |                        |                          |                                        |                                        |
| Material Classificat                                                                                                                                                                               | 1 : Single Individ                                            |                                                            |                               | -                                                  | ed yellow bit                             | iwn, some ime                       | to coarse sa           | and, trace of fin        | e gravei.                              |                                        |
|                                                                                                                                                                                                    | 2 : Initial Specin                                            |                                                            |                               |                                                    | Initial Bar B                             | response – 0                        | 95                     |                          |                                        |                                        |
|                                                                                                                                                                                                    | 3 : Sample subr                                               |                                                            |                               |                                                    | inidal Bai B                              | 100001100 - 0.                      |                        |                          |                                        |                                        |
| note                                                                                                                                                                                               | o campio duoi                                                 | nation by onor                                             | n, oumpiou o                  |                                                    |                                           |                                     |                        |                          |                                        |                                        |
|                                                                                                                                                                                                    |                                                               |                                                            |                               |                                                    |                                           |                                     |                        |                          |                                        |                                        |
|                                                                                                                                                                                                    |                                                               |                                                            |                               |                                                    |                                           |                                     |                        |                          |                                        | 15                                     |
| 150                                                                                                                                                                                                |                                                               |                                                            |                               |                                                    |                                           |                                     |                        |                          |                                        |                                        |
|                                                                                                                                                                                                    |                                                               |                                                            |                               | <b>O</b>                                           |                                           | stage 3                             |                        |                          |                                        | 10                                     |
|                                                                                                                                                                                                    |                                                               |                                                            |                               |                                                    |                                           |                                     |                        | ~                        | 1                                      | Ś                                      |
| x <sup>2</sup>                                                                                                                                                                                     |                                                               |                                                            |                               |                                                    |                                           |                                     |                        |                          |                                        | 80                                     |
|                                                                                                                                                                                                    |                                                               |                                                            |                               |                                                    |                                           |                                     |                        |                          |                                        | Ś                                      |
|                                                                                                                                                                                                    |                                                               |                                                            |                               |                                                    |                                           |                                     |                        |                          | 1 1                                    |                                        |
| € <sup>2</sup>                                                                                                                                                                                     | <u>├───</u>                                                   | +                                                          |                               | <u> </u>                                           |                                           |                                     |                        |                          | +                                      | ~~ ~                                   |
| <b>≥</b> ~ [                                                                                                                                                                                       |                                                               | I                                                          | stage 2                       |                                                    | /                                         |                                     |                        |                          | 1                                      | \$                                     |
| s                                                                                                                                                                                                  |                                                               |                                                            |                               |                                                    | /                                         | فستسرم سرير                         |                        |                          |                                        | ත් දී තී තී තී<br>Dore Water Pressure  |
| Deviator Stress kPa<br>ふ る                                                                                                                                                                         |                                                               | <u> </u>                                                   |                               | ·/                                                 | ,                                         |                                     |                        |                          |                                        | Ś,                                     |
| 5                                                                                                                                                                                                  |                                                               |                                                            |                               |                                                    | and the second                            |                                     |                        |                          |                                        | <sup>33</sup>                          |
| viat di                                                                                                                                                                                            | stage 1                                                       | $\diamond$                                                 |                               |                                                    | Sec. 1                                    |                                     |                        |                          |                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| å                                                                                                                                                                                                  |                                                               |                                                            |                               |                                                    | J.                                        |                                     |                        |                          |                                        | 12                                     |
| ~ ~~                                                                                                                                                                                               |                                                               |                                                            |                               |                                                    | 1                                         |                                     |                        |                          | 1 1                                    | ~~ <b>`</b>                            |
|                                                                                                                                                                                                    |                                                               | , <sup>r</sup>                                             |                               | /                                                  |                                           |                                     |                        |                          | 1                                      |                                        |
|                                                                                                                                                                                                    |                                                               | - <u>- 1</u> -                                             |                               |                                                    |                                           |                                     |                        |                          | 1                                      | \$                                     |
| 12                                                                                                                                                                                                 |                                                               | 1                                                          |                               |                                                    |                                           |                                     |                        |                          |                                        | 0                                      |
|                                                                                                                                                                                                    | n-n-n-v                                                       | 1                                                          |                               |                                                    |                                           |                                     |                        |                          | 1                                      | \$                                     |
| 1                                                                                                                                                                                                  | V                                                             |                                                            |                               |                                                    |                                           |                                     |                        |                          |                                        |                                        |
|                                                                                                                                                                                                    |                                                               |                                                            |                               |                                                    | 0/0 0/0                                   |                                     |                        |                          |                                        | )                                      |
| 1 <sup>er0</sup> 0.20°                                                                                                                                                                             | 0. <sup>100</sup> 0.60                                        | 0,800                                                      | 1.00°% 1.20°                  | 10 100 N                                           | <sup>20°/0</sup> ,80°/1                   | 2.00% 2                             | 20010 2,40010          | 2.60% 2.8                | 0°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° |                                        |
| 0                                                                                                                                                                                                  | 5 5                                                           | 9                                                          |                               |                                                    | Strain                                    |                                     | V                      | V V                      | 5                                      |                                        |
|                                                                                                                                                                                                    |                                                               |                                                            |                               |                                                    |                                           |                                     |                        |                          |                                        |                                        |
| Type of Test                                                                                                                                                                                       | <ul> <li>Saturated</li> </ul>                                 | consolidai                                                 | ted undrai                    | ned, with po                                       | ro wator m                                | nasuraman                           | ts                     |                          |                                        |                                        |
| ear Stage Data                                                                                                                                                                                     | . Outurated,                                                  | , 00110011441                                              | .ou, unurun                   | iou, mai pol                                       | e water m                                 | loadaronnon                         | Back Pres              | ssure:                   |                                        |                                        |
| Stage                                                                                                                                                                                              | Strain Rate                                                   | ٤ <sub>f</sub>                                             | σ3'                           | u <sub>o</sub>                                     | Uf                                        | (σ <sub>1</sub> - σ <sub>3</sub> )φ |                        |                          | 600.0 kPa                              |                                        |
|                                                                                                                                                                                                    | %/min                                                         | %                                                          | kPa                           | kPa                                                | kPa                                       | kPa                                 | Cell Press             | sure(s):                 |                                        |                                        |
| 1                                                                                                                                                                                                  | 0.0050                                                        | 0.591                                                      | 19.000                        | 602.000                                            | 611.000                                   | 50.953                              |                        | Stage 1:                 | 630.0 kPa                              |                                        |
| 2                                                                                                                                                                                                  | 0.0050                                                        | 1.388                                                      | 35.000                        | 600.000                                            | 625.000                                   | 78.799                              |                        | Stage 2:                 | 660.0 kPa                              |                                        |
| -                                                                                                                                                                                                  | 0.0050                                                        | 2.416                                                      | 74.000                        | 601.000                                            | 646.000                                   | 130.473                             |                        | Stage 3:                 | 720.0 kPa                              |                                        |
| 3                                                                                                                                                                                                  |                                                               |                                                            |                               |                                                    |                                           | Moisture                            | Contents:              |                          |                                        |                                        |
| 3<br>nsolidation Sta                                                                                                                                                                               | *                                                             |                                                            |                               | Drainage (                                         | Condition                                 | Initial:                            |                        | Stage 1:                 | 21.6 %                                 |                                        |
| nsolidation Sta                                                                                                                                                                                    | ,                                                             |                                                            |                               |                                                    |                                           | Final:                              | Top:                   |                          |                                        |                                        |
| nsolidation Sta<br>Stage దరాత                                                                                                                                                                      |                                                               |                                                            |                               | one end and radia                                  | l boundarv                                | i indi.                             | Middle:                | Stage 3:                 |                                        | 23.9                                   |
| nsolidation Sta<br>Stage ∆σэ <u>e</u><br>kPa                                                                                                                                                       |                                                               | l L                                                        |                               |                                                    |                                           |                                     | Bottom:                | 0                        |                                        | _ 0.0                                  |
| nsolidation Sta<br>Stage ∆ठэ <u>.</u><br><i>kPa</i><br>1 28.                                                                                                                                       | 00                                                            |                                                            |                               | one end and radia                                  |                                           |                                     |                        |                          | t/m 2                                  |                                        |
| nsolidation Stage Δσ<br>Stage Δσ<br><i>kPa</i><br>1 28.<br>2 60.                                                                                                                                   | 00<br>00                                                      |                                                            |                               | one end and radia one end and radia                |                                           | Initial Dry                         | Density                | 1.57                     | v1113                                  |                                        |
| Assolidation         Stage         Δσэ           Stage         kPa           1         28.           2         60.           3         119.                                                        | 00<br>00<br>00                                                | degrees                                                    |                               |                                                    |                                           | Initial Dry                         | -                      |                          |                                        |                                        |
| $\begin{array}{c c} \text{nsolidation Stage} & \Delta \sigma_{2} \\ \hline Stage & & kPa \\ 1 & & 28 \\ 2 & & 60 \\ 3 & & 119 \\ \hline \text{Angle of Friction} \end{array}$                      | 00<br>00<br>00<br>00:<br><b>27.5</b>                          | degrees                                                    |                               |                                                    |                                           | -                                   | Density:<br>t Density: | 1.57<br>1.91             |                                        |                                        |
| Assolidation         Stage         Δσэ           Stage         kPa           1         28.           2         60.           3         119.                                                        | 00<br>00<br>00<br>01<br>27.5                                  | degrees<br>kPa                                             |                               |                                                    |                                           | -                                   | -                      |                          |                                        |                                        |
| $\begin{array}{c c} \text{nsolidation Stage} & \Delta \sigma_{2} \\ \hline Stage & & kPa \\ 1 & & 28 \\ 2 & & 60 \\ 3 & & 119 \\ \hline \text{Angle of Friction} \end{array}$                      | 00<br>00<br>01<br>01<br>02<br>07.5<br>01<br>5.4               | -                                                          |                               |                                                    |                                           | -                                   | -                      |                          |                                        |                                        |
| Asolidation Stage     Δσэз       Stage     Δσэз       1     28.       2     60.       3     119.       Angle of Frictio     Cohesio       Contesio     Cohesio                                     | 00<br>00<br>00<br>00<br>00<br>27.5<br>5.4                     | kPa                                                        | with NATA's                   | one end and radia                                  | l boundary                                | Initial We                          | t Density:             | 1.91                     | t/m3                                   |                                        |
| Asolidation Stage     Δσэз       Stage     Δσэз       1     28.       2     60.       3     119.       Angle of Frictio     Cohesio       Contesio     Cohesio                                     | 00<br>00<br>00<br>00<br>00<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | kPa                                                        |                               | one end and radia                                  | l boundary                                | Initial We                          | t Density:             |                          | t/m3                                   |                                        |
| Ansolidation Stage       Δσэ         Stage       kPa         1       28.         2       60.         3       119.         Angle of Frictio       Cohesio         EN TRIAX 2 004 201       This doc | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00      | kPa<br>in accordance<br>ed for complia<br>s, calibrations, | ance with ISO/<br>and/or meas | one end and radia<br>accreditation m<br>/IEC 17025 | l boundary<br>equirements.<br>ded in this | Initial We                          | t Density:             | 1.91                     | t/m3                                   |                                        |

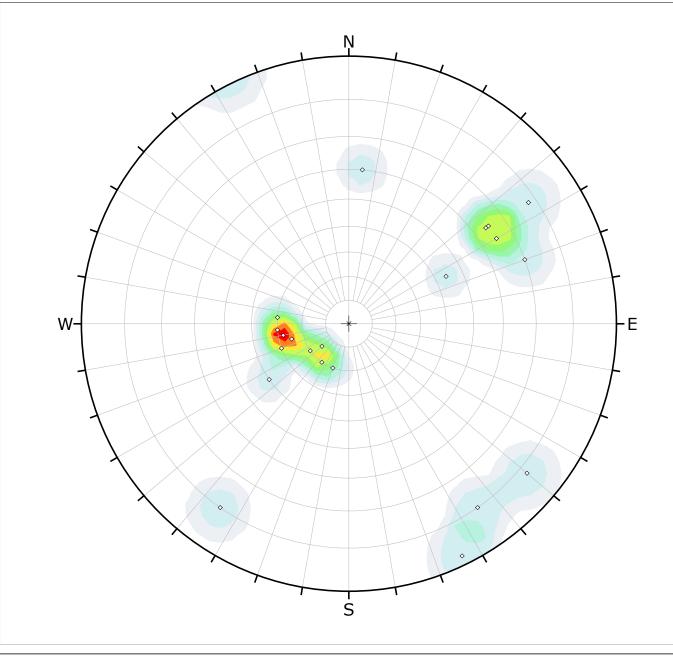


| client: SMEC                      | TESTING   | G SERVICES P/L                                                           | job number:                                | INFOARTA01236AA                                    |
|-----------------------------------|-----------|--------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| principal:                        |           |                                                                          |                                            |                                                    |
| project: STS No                   | o. 16309/ | /5442C                                                                   | laboratory:                                | Artarmon                                           |
|                                   |           |                                                                          | report date:                               | 11 April 2015                                      |
| location: Site No                 | .300240   | 2 - Isabella Weir                                                        | Report No.                                 | IOLT 8473                                          |
| test procedure:                   | AS12      | 289.3.8.3                                                                | test date:                                 | 11 April 2015                                      |
| Sample                            |           | Sample                                                                   | e #8, Test Pit No.6 (1                     | 1.60 to 1.95 m)                                    |
| Identification                    |           |                                                                          | ARTA15S-0016                               | 51                                                 |
| CLASSIFICATION                    |           |                                                                          |                                            |                                                    |
| Designation                       |           |                                                                          | D1                                         |                                                    |
| Description                       |           |                                                                          | Highly Dispersi                            | ive                                                |
| BEFORE TEST                       |           |                                                                          |                                            |                                                    |
| Moisture Content<br>(as received) | %         |                                                                          | 21.6                                       |                                                    |
| Dry Density<br>(as received)      | t/m3      |                                                                          | 1.57                                       |                                                    |
| Time of Curing                    |           |                                                                          | 2 days                                     |                                                    |
| Source of Water                   |           |                                                                          | Distilled                                  |                                                    |
| Material Description              |           |                                                                          | dium to high plastic<br>coarse sand, trace | ity, mottled yellow brown, some<br>of fine gravel. |
|                                   |           |                                                                          |                                            |                                                    |
|                                   |           |                                                                          |                                            |                                                    |
|                                   |           |                                                                          |                                            |                                                    |
|                                   |           |                                                                          |                                            |                                                    |
|                                   |           | as received' Wet Density and 'as re<br>m Client, sampled on the 18/03/15 | eceived' Moisture Content                  | 2.                                                 |

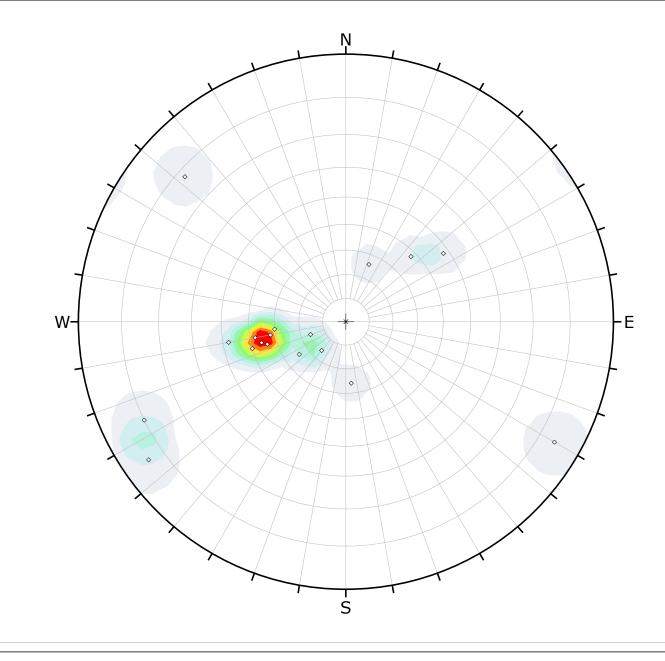
F:\INFO\01. Laboratory\01 - INFOLCOV Jobs\INFOARTA 01336AA - ISABELLA WEIR\[TP06\_1.60-1.95\_Pinhole.xis]report 1



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/national Associate/Laboratory Manager

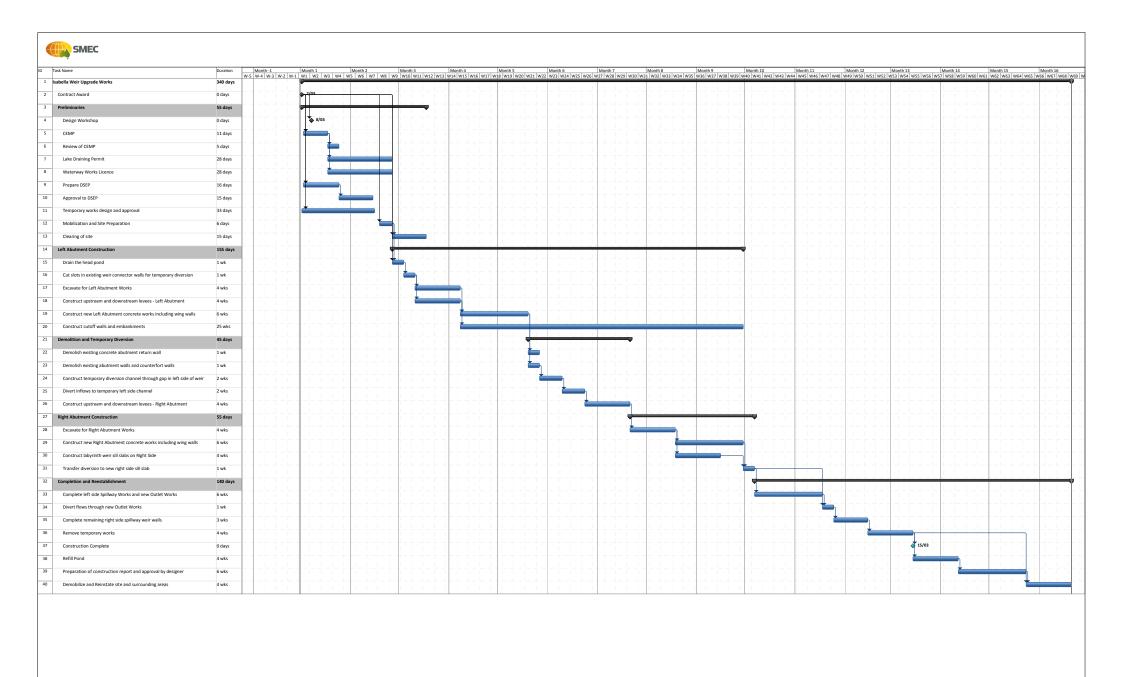

NATA Accredited Laboratory No 431

Approved Signatory:




GLEN-PINHOLE-RPT-002-2013

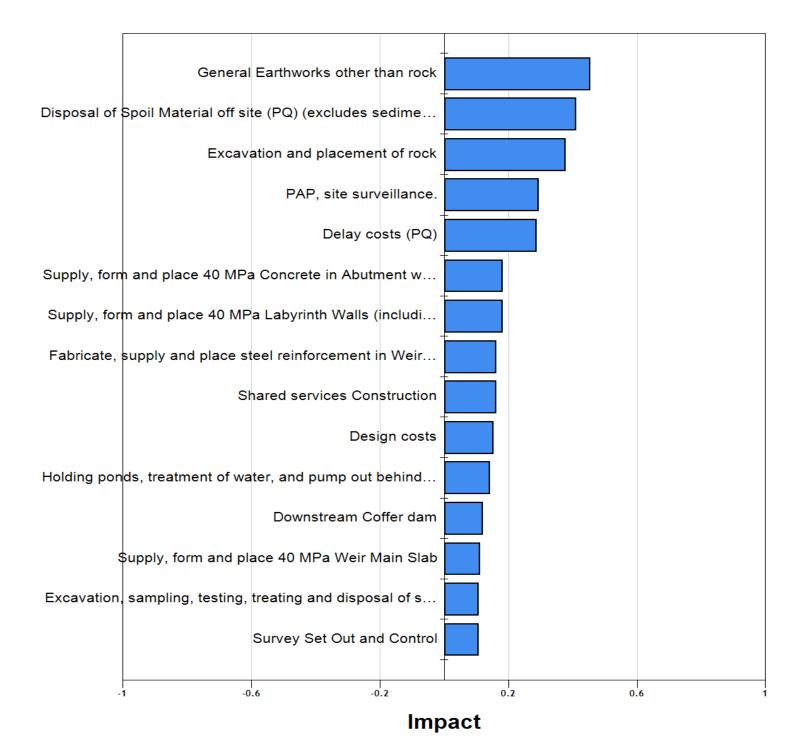
APPENDIX 4.02: SMEC STEREONET POLE PLOTS, 2015




| Symbol | Feature       |                 |                        |       |   |  |  |
|--------|---------------|-----------------|------------------------|-------|---|--|--|
| \$     | Pole Vectors  |                 |                        |       |   |  |  |
| Color  |               | Density (       | Density Concentrations |       |   |  |  |
|        |               | 0.00            | -                      | 2.10  |   |  |  |
|        |               | 2.10            | -                      | 4.20  |   |  |  |
|        |               | 4.20            | -                      | 6.30  |   |  |  |
|        |               | 6.30            | -                      | 8.40  |   |  |  |
|        |               | 8.40            | -                      | 10.50 |   |  |  |
|        |               | 10.50           | -                      | 12.60 |   |  |  |
|        |               | 12.60           | -                      | 14.70 |   |  |  |
|        |               | 14.70           | -                      | 16.80 |   |  |  |
|        |               | 16.80           | -                      | 18.90 |   |  |  |
|        |               | 18.90           | -                      | 21.00 |   |  |  |
| Ма     | ximum Den     | <b>y</b> 20.94% |                        |       |   |  |  |
|        | Contour D     | a Pole Vecto    | ors                    |       |   |  |  |
| Conto  | our Distribut | n Fisher        |                        |       |   |  |  |
| Coun   | ting Circle S | e 1.0%          |                        |       |   |  |  |
|        | Plot M        | e Pole Vect     | nrs                    |       | _ |  |  |
|        | Vector Co     |                 |                        |       |   |  |  |
|        |               | (               | a (C3)                 |       |   |  |  |
|        | Hemisph       |                 |                        |       |   |  |  |
|        | Project       | n Equal Ang     | le                     |       |   |  |  |



| Symbol Featu | re        |                        |    |       |  |  |
|--------------|-----------|------------------------|----|-------|--|--|
| ♦ Pole V     | ectors    |                        |    |       |  |  |
| Color        |           | Density Concentrations |    |       |  |  |
|              |           | 0.00                   | -  | 3.00  |  |  |
|              |           | 3.00                   | -  | 6.00  |  |  |
|              |           | 6.00                   | -  | 9.00  |  |  |
|              |           | 9.00                   | -  | 12.00 |  |  |
|              |           | 12.00                  | -  | 15.00 |  |  |
|              |           | 15.00                  | -  | 18.00 |  |  |
|              |           | 18.00                  | -  | 21.00 |  |  |
|              |           | 21.00                  | -  | 24.00 |  |  |
|              |           | 24.00                  | -  | 27.00 |  |  |
|              |           | 27.00                  | -  | 30.00 |  |  |
| Maximum      | Density   | 29.67%                 |    |       |  |  |
| Conto        | our Data  | Pole Vecto             | rs |       |  |  |
| Contour Dist | ribution  | Fisher                 |    |       |  |  |
| Counting Ci  | rcle Size | 1.0%                   |    |       |  |  |
| PI           | ot Mode   | Pole Vecto             | rs |       |  |  |
|              | or Count  | 18 (18 Ent             |    |       |  |  |
|              | nisphere  | Lower                  |    |       |  |  |
|              |           |                        |    |       |  |  |
| Pr           | ojection  | Equal Ang              | e  |       |  |  |


APPENDIX E PRELIMINARY CONSTRUCTION PROGRAMME



APPENDIX F CONSTRUCTION COST ESTIMATE



#### Project: Isabella Weir Cost Estimate FSP Report 24 Feb 2016





#### Project: Isabella Weir Cost Estimate FSP Report 24 Feb 2016

| PickToole Ptv   td                                                                         |       |      | Lietin   | a      |              |              | Page 1 of 1  |
|--------------------------------------------------------------------------------------------|-------|------|----------|--------|--------------|--------------|--------------|
| Removal of asbestos                                                                        | Tonne | 0.00 | 20.00    | 100.00 | \$150.00     | \$150.00     | \$250.00     |
| Geotechnical Engineer<br>advice during<br>construction                                     | Item  | 1.00 | 1.00     | 1.00   | \$80,000.00  | \$100,000.00 | \$150,000.00 |
| Audit Testing (PS)                                                                         | Item  | 1.00 | 1.00     | 1.00   | \$10,000.00  | \$15,000.00  | \$25,000.00  |
| Installation of<br>groundwater monitoring<br>borehole (PS)                                 | Item  | 1.00 | 1.00     | 1.00   | \$0.00       | \$5,000.00   | \$10,000.00  |
| Monitoring of water<br>quality after rainfall<br>event (25mm within<br>24hrs or greater)   | Item  | 1.00 | 1.00     | 1.00   | \$0.00       | \$10,000.00  | \$20,000.00  |
| Draining Lake Licence                                                                      | Item  | 1.00 | 1.00     | 1.00   | \$5,000.00   | \$5,000.00   | \$10,000.00  |
| Waterway Works<br>Licence                                                                  | Item  | 1.00 | 1.00     | 1.00   | \$5,000.00   | \$5,000.00   | \$10,000.00  |
| Provision for species<br>relocations as required<br>by Environmental<br>Specialist (PS)    | Item  | 1.00 | 1.00     | 1.00   | \$5,000.00   | \$10,000.00  | \$20,000.00  |
| Provision for unanticipated finds (PS)                                                     | Item  | 1.00 | 1.00     | 1.00   | \$2,000.00   | \$10,000.00  | \$20,000.00  |
| Protection of Sewer<br>Mains                                                               | Item  | 1.00 | 1.00     | 1.00   | \$15,000.00  | \$25,000.00  | \$40,000.00  |
| Relocation of Telstra conduits and cables                                                  | Item  | 1.00 | 1.00     | 1.00   | \$28,000.00  | \$30,000.00  | \$35,000.00  |
| Relocation of gas mains                                                                    | Item  | 1.00 | 1.00     | 1.00   | \$400,000.00 | \$450,000.00 | \$500,000.00 |
| Protection of over head<br>power cables                                                    | Item  | 1.00 | 1.00     | 1.00   | \$8,000.00   | \$10,000.00  | \$15,000.00  |
| Construction Report                                                                        | Item  | 1.00 | 1.00     | 1.00   | \$30,000.00  | \$40,000.00  | \$60,000.00  |
| Work-As-Executed<br>Quality Records &<br>Drawings                                          | Item  | 1.00 | 1.00     | 1.00   | \$15,000.00  | \$20,000.00  | \$40,000.00  |
| Project Signs                                                                              | No    | 5.00 | 6.00     | 8.00   | \$1,200.00   | \$1,500.00   | \$2,000.00   |
| Coordination with Utility<br>Authorities                                                   | item  | 1.00 | 1.00     | 1.00   | \$18,000.00  | \$20,000.00  | \$25,000.00  |
| Survey Set Out and<br>Control                                                              | Item  | 1.00 | 1.00     | 1.00   | \$200,000.00 | \$250,000.00 | \$300,000.00 |
| Site Establishment<br>including contractor and<br>PAP facilities,<br>compound, and fencing | Item  | 1.00 | 1.00     | 1.00   | \$200,000.00 | \$250,000.00 | \$300,000.00 |
| Construction<br>Environmental<br>Management Plan                                           | Item  | 1.00 | 1.00     | 1.00   | \$10,000.00  | \$30,000.00  | \$50,000.00  |
| Item                                                                                       | Unit  | Q BC | Quantity | Q WC   | R BC         | Rate         | R WC         |
| · <b>,</b> ·········                                                                       |       |      |          |        |              |              |              |

| Group : <b>Preliminaries</b><br>Item | Unit | Q BC | Quantity | Q WC  | R BC        | Rate        | R WC        |
|--------------------------------------|------|------|----------|-------|-------------|-------------|-------------|
| (PQ)                                 |      |      |          |       |             |             |             |
| Delay costs (PQ)                     | Day  | 0.00 | 20.00    | 50.00 | \$2,500.00  | \$5,000.00  | \$7,000.00  |
| Dam Safety Emergency<br>Plan         | Item | 1.00 | 1.00     | 1.00  | \$35,000.00 | \$50,000.00 | \$75,000.00 |

| Group : <b>Traffic</b><br>Item | Unit | Q BC  | Quantity | Q WC  | R BC        | Rate        | R WC        |
|--------------------------------|------|-------|----------|-------|-------------|-------------|-------------|
| Establish including<br>tracks  | Item | 1.00  | 1.00     | 1.00  | \$20,000.00 | \$40,000.00 | \$60,000.00 |
| Remove                         | Item | 1.00  | 1.00     | 1.00  | \$5,000.00  | \$10,000.00 | \$20,000.00 |
| Maintenance                    | wk   | 40.00 | 60.00    | 80.00 | \$400.00    | \$500.00    | \$700.00    |

| Group : Earthworks                                                                                                                                    |      |           |           |           |              |              |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-----------|-----------|--------------|--------------|--------------|
| Item                                                                                                                                                  | Unit | Q BC      | Quantity  | Q WC      | R BC         | Rate         | R WC         |
| Upstream Coffer dam                                                                                                                                   | Item | 1.00      | 1.00      | 1.00      | \$110,000.00 | \$125,000.00 | \$150,000.00 |
| Downstream Coffer<br>dam                                                                                                                              | Item | 1.00      | 1.00      | 1.00      | \$50,000.00  | \$100,000.00 | \$150,000.00 |
| Coffer dams removal                                                                                                                                   | Item | 1.00      | 1.00      | 1.00      | \$0.00       | \$60,000.00  | \$100,000.00 |
| Clearing and Grubbing                                                                                                                                 | ha   | 2.00      | 4.00      | 6.00      | \$4,000.00   | \$5,000.00   | \$7,000.00   |
| Removal of Nominated<br>Trees                                                                                                                         | Each | 65.00     | 70.00     | 80.00     | \$90.00      | \$100.00     | \$120.00     |
| Removal and stockpiling of topsoil                                                                                                                    | m3   | 400.00    | 600.00    | 800.00    | \$12.00      | \$15.00      | \$18.00      |
| Holding ponds,<br>treatment of water, and<br>pump out behind<br>cofferdams                                                                            | Item | 1.00      | 1.00      | 1.00      | \$75,000.00  | \$100,000.00 | \$200,000.00 |
| Relocate flow gauge                                                                                                                                   | Item | 1.00      | 1.00      | 1.00      | \$15,000.00  | \$20,000.00  | \$30,000.00  |
| Excavation and placement of rock                                                                                                                      | m3   | 4,500.00  | 4,650.00  | 6,000.00  | \$90.00      | \$100.00     | \$150.00     |
| Excavation, sampling,<br>testing, treating and<br>disposal of sediment in<br>Isabella Pond (PQ)                                                       | m3   | 0.00      | 1,000.00  | 1,200.00  | \$60.00      | \$75.00      | \$90.00      |
| Disposal of Spoil<br>Material off site (PQ)<br>(excludes sediment)                                                                                    | m3   | 10,000.00 | 12,000.00 | 14,000.00 | \$20.00      | \$35.00      | \$50.00      |
| Unsuitable Material<br>(PQ)                                                                                                                           | m3   | 800.00    | 1,000.00  | 1,500.00  | \$40.00      | \$50.00      | \$60.00      |
| Replacement of<br>unsuitable with general<br>fill (PQ)                                                                                                | m3   | 800.00    | 1,000.00  | 1,500.00  | \$30.00      | \$40.00      | \$50.00      |
| General Earthworks other than rock                                                                                                                    | m3   | 12,000.00 | 13,000.00 | 15,000.00 | \$40.00      | \$50.00      | \$70.00      |
| Slab                                                                                                                                                  | m3   | 15.00     | 15.00     | 15.00     | \$180.00     | \$200.00     | \$230.00     |
| Walls                                                                                                                                                 | m3   | 370.00    | 370.00    | 370.00    | \$250.00     | \$300.00     | \$400.00     |
| Labyrinth                                                                                                                                             | m3   | 40.00     | 40.00     | 40.00     | \$250.00     | \$300.00     | \$400.00     |
| Foundation Preparation<br>including excavation,<br>dental cleaning and<br>concrete filling as<br>directed by<br>Geotechnical Engineer<br>on site (PQ) | m2   | 1,200.00  | 1,500.00  | 2,000.00  | \$15.00      | \$20.00      | \$25.00      |
| Drilling of grout holes<br>(PQ)                                                                                                                       | Im   | 80.00     | 100.00    | 120.00    | \$100.00     | \$120.00     | \$150.00     |
| Hook-up to grout holes<br>(PQ)                                                                                                                        | No   | 18.00     | 20.00     | 25.00     | \$450.00     | \$500.00     | \$550.00     |
| Grout Cap                                                                                                                                             | lm   | 40.00     | 60.00     | 80.00     | \$250.00     | \$300.00     | \$400.00     |
| Supply and install dental grout (PQ)                                                                                                                  | m3   | 75.00     | 100.00    | 200.00    | \$450.00     | \$500.00     | \$550.00     |
| Supply and install concrete filling (PQ)                                                                                                              | m3   | 75.00     | 100.00    | 200.00    | \$250.00     | \$300.00     | \$350.00     |
| Extra over to 205P2 for<br>Zone 1 - Condition,<br>place and compact<br>Clay Core material from                                                        | m3   | 4,500.00  | 5,000.00  | 6,000.00  | \$8.00       | \$10.00      | \$15.00      |

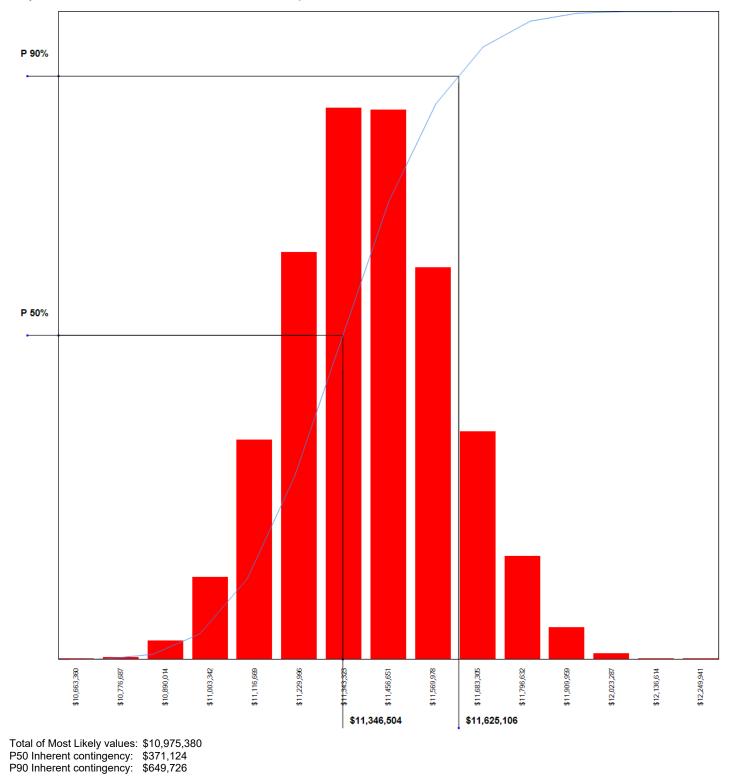
| Item                                                                                                                                                        | Unit | Q BC     | Quantity | Q WC      | R BC    | Rate    | R WC    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|-----------|---------|---------|---------|
| stock pile on site as detailed on drawings                                                                                                                  |      |          |          |           |         |         |         |
| Extra over to 205P2 for<br>Zone 1 - Supply,<br>condition, place and<br>compact Clay Core<br>material imported on<br>site as detailed on<br>drawings (PQ)    | m3   | 900.00   | 1,000.00 | 1,300.00  | \$20.00 | \$25.00 | \$35.00 |
| Extra over to 205P2 for<br>Zone 2 - Condition,<br>place and compact<br>general fill material<br>from stock pile on site<br>as detailed on drawings          | m3   | 7,500.00 | 8,000.00 | 10,000.00 | \$8.00  | \$10.00 | \$15.00 |
| Extra over to 205P2 for<br>Zone 2 - Supply,<br>condition, place and<br>compact general fill<br>material imported on<br>site as detailed on<br>drawings (PQ) | m3   | 900.00   | 1,000.00 | 1,300.00  | \$20.00 | \$25.00 | \$35.00 |
| Extra over to 205P2 for<br>Zone 5A fine filter<br>material - Supply<br>condition, place and<br>compact fine filter<br>material as detailed on<br>drawings   | m3   | 250.00   | 400.00   | 600.00    | \$20.00 | \$25.00 | \$35.00 |
| Extra over to 205P2 for<br>Zone 5B coarse filter<br>material - Supply<br>condition, place and<br>compact fine filter<br>material as detailed on<br>drawings | m3   | 150.00   | 300.00   | 500.00    | \$20.00 | \$25.00 | \$35.00 |
| Supply, place 20MPa<br>mass concrete for<br>backfilling diversion<br>channel as detailed on<br>drawings (PQ)                                                | m3   | 100.00   | 130.00   | 160.00    | \$65.00 | \$71.00 | \$80.00 |

| Group : Underground s                                                                                                                                                                  |      |        |          |        |          |            |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|----------|--------|----------|------------|------------|
| Item                                                                                                                                                                                   | Unit | Q BC   | Quantity | Q WC   | R BC     | Rate       | R WC       |
| Removal of existing gas<br>main and Telstra<br>conduits                                                                                                                                | m    | 80.00  | 100.00   | 160.00 | \$80.00  | \$100.00   | \$120.00   |
| 150mm dia slotted pipe<br>Subsoil drainage<br>beneath embankment<br>and trench as noted on<br>drawing No<br>3002402-102 in<br>location as directed by<br>Geotechnical Engineer<br>(PQ) | m    | 100.00 | 120.00   | 150.00 | \$180.00 | \$200.00   | \$220.00   |
| Extra over the<br>construction rate for<br>306P18 for filter sock to<br>the slotted drain                                                                                              | m    | 100.00 | 120.00   | 150.00 | \$35.00  | \$40.00    | \$45.00    |
| Flushing point in<br>locations as directed by<br>Geotechnical Engineer                                                                                                                 | No   | 8.00   | 10.00    | 15.00  | \$130.00 | \$150.00   | \$170.00   |
| V Notch Headwall in<br>locations as directed by<br>Geotechnical Engineer                                                                                                               | No   | 2.00   | 2.00     | 2.00   | \$800.00 | \$1,000.00 | \$1,500.00 |

| Group : Minor works,                                                                                          | settlement |        |          |        |             |             |             |
|---------------------------------------------------------------------------------------------------------------|------------|--------|----------|--------|-------------|-------------|-------------|
| Item                                                                                                          | Unit       | Q BC   | Quantity | Q WC   | R BC        | Rate        | R WC        |
| Mower strips<br>(200x200mm)                                                                                   | m          | 0.00   | 200.00   | 300.00 | \$65.00     | \$75.00     | \$90.00     |
| 3m wide 150mm thick<br>reinforced concrete<br>including base material<br>(PS)                                 | m2         | 200.00 | 250.00   | 350.00 | \$140.00    | \$150.00    | \$170.00    |
| Mortared stone pitching (150mm thick) (PQ)                                                                    | m2         | 180.00 | 200.00   | 250.00 | \$125.00    | \$150.00    | \$175.00    |
| Supply, place and<br>compact Rip Rap<br>material as detailed on<br>drawings                                   | m3         | 200.00 | 250.00   | 300.00 | \$200.00    | \$220.00    | \$250.00    |
| Survey settlement<br>monuments on<br>embankment as<br>directed by<br>Geotechnical Engineer                    | No         | 4.00   | 6.00     | 8.00   | \$1,800.00  | \$2,000.00  | \$2,200.00  |
| Deep survey reference<br>mark off embankment<br>in locations as directed<br>by Geotechnical<br>Engineer       | No         | 0.00   | 1.00     | 2.00   | \$2,000.00  | \$2,500.00  | \$3,000.00  |
| Monitoring Borehole as<br>directed by<br>Geotechnical Engineer<br>to include standard pipe<br>Piezometer (PQ) | No         | 1.00   | 2.00     | 3.00   | \$1,800.00  | \$2,000.00  | \$2,200.00  |
| Geotechnical advice for<br>instrumentation within<br>the embankment                                           | item       | 1.00   | 1.00     | 1.00   | \$10,000.00 | \$15,000.00 | \$30,000.00 |

| Group : <b>Major concrete</b><br>Item                                                                                 | Unit | Q BC   | Quantity | Q WC   | R BC       | Rate       | R WC       |
|-----------------------------------------------------------------------------------------------------------------------|------|--------|----------|--------|------------|------------|------------|
| Supply and place<br>15MPa blinding<br>concrete (based on<br>50mm thick)                                               | m3   | 75.00  | 85.00    | 95.00  | \$180.00   | \$200.00   | \$250.00   |
| Supply, form and place<br>40 MPa Concrete in<br>Abutment & Wing wall<br>shear keys and base<br>slabs                  | m3   | 290.00 | 310.00   | 350.00 | \$550.00   | \$600.00   | \$700.00   |
| Fabricate, supply and<br>place steel<br>reinforcement in<br>Abutment & Wing wall<br>shear keys and base<br>slabs (PQ) | Т    | 65.00  | 74.00    | 80.00  | \$2,500.00 | \$3,000.00 | \$3,500.00 |
| Supply, form and place<br>40 MPa Concrete in<br>Wing walls                                                            | m3   | 50.00  | 55.00    | 60.00  | \$1,100.00 | \$1,250.00 | \$1,500.00 |
| Fabricate, supply and<br>place steel<br>reinforcement in Wing<br>walls (PQ)                                           | т    | 3.00   | 4.00     | 4.00   | \$2,500.00 | \$3,000.00 | \$3,500.00 |
| Supply, form and place<br>40 MPa Concrete in<br>Cut-off walls                                                         | m3   | 210.00 | 250.00   | 250.00 | \$550.00   | \$600.00   | \$700.00   |
| Fabricate, supply and<br>place steel<br>reinforcement in<br>Cut-off walls (PQ)                                        | т    | 45.00  | 60.00    | 65.00  | \$2,500.00 | \$3,000.00 | \$3,500.00 |
| Supply, form and place<br>40 MPa Concrete in<br>Abutment walls                                                        | m3   | 330.00 | 360.00   | 400.00 | \$1,100.00 | \$1,250.00 | \$1,500.00 |
| Fabricate, supply and<br>place steel<br>reinforcement in<br>Abutment walls (PQ)                                       | т    | 70.00  | 80.00    | 90.00  | \$2,500.00 | \$3,000.00 | \$3,500.00 |
| Supply, form and place<br>40 MPa Weir Main Slab                                                                       | m3   | 580.00 | 620.00   | 650.00 | \$550.00   | \$600.00   | \$700.00   |
| Fabricate, supply and<br>place steel<br>reinforcement in Weir<br>Main slab (incl. drilled &<br>epoxied starters)(PQ)  | т    | 140.00 | 150.00   | 160.00 | \$2,500.00 | \$3,000.00 | \$3,500.00 |
| Supply, form and place<br>40 MPa Labyrinth Walls<br>(including return walls)                                          | m3   | 380.00 | 400.00   | 420.00 | \$1,100.00 | \$1,250.00 | \$1,500.00 |
| Fabricate, supply and<br>place steel<br>reinforcement in<br>Labyrinth walls (incl<br>return walls) (PQ)               | т    | 80.00  | 87.00    | 95.00  | \$2,500.00 | \$3,000.00 | \$3,500.00 |
| Supply, form and place<br>40 MPa Abutment<br>Return & end walls                                                       | m3   | 35.00  | 40.00    | 45.00  | \$1,100.00 | \$1,250.00 | \$1,500.00 |
| Fabricate, supply and<br>place steel<br>reinforcement in<br>Abutment Return & end<br>walls (PQ)                       | Т    | 8.00   | 10.00    | 12.00  | \$2,500.00 | \$3,000.00 | \$3,500.00 |

| Item                                                                                                          | Unit | Q BC   | Quantity | Q WC   | R BC        | Rate        | R WC        |
|---------------------------------------------------------------------------------------------------------------|------|--------|----------|--------|-------------|-------------|-------------|
| Supply, form and place 40 MPa Infill walls                                                                    | m3   | 25.00  | 28.00    | 35.00  | \$1,100.00  | \$1,250.00  | \$1,500.00  |
| Fabricate, supply and<br>place steel<br>reinforcement in Infill<br>walls (PQ)                                 | Т    | 5.00   | 6.00     | 7.00   | \$2,500.00  | \$3,000.00  | \$3,500.00  |
| Supply Galv'd steel<br>Dowel Bars                                                                             | No   | 210.00 | 220.00   | 230.00 | \$75.00     | \$80.00     | \$90.00     |
| Supply and place<br>80mm dia slotted<br>pressure relief pipes<br>encased in 300x200mm<br>of no-fines concrete | m    | 80.00  | 85.00    | 95.00  | \$190.00    | \$200.00    | \$220.00    |
| Supply and place all<br>aggregate and epoxy<br>bed for aeration nib at<br>top of new Labyrinth<br>walls       | Item | 1.00   | 1.00     | 1.00   | \$15,000.00 | \$20,000.00 | \$30,000.00 |
| Supply and install<br>suitable galv'd steel<br>handrails/balustrades                                          | m    | 190.00 | 200.00   | 230.00 | \$190.00    | \$200.00    | \$230.00    |
| Supply and install waterstop seals and sealants                                                               | Item | 1.00   | 1.00     | 1.00   | \$20,000.00 | \$25,000.00 | \$30,000.00 |


| Group : <b>Outlet works</b><br>Item                                                | Unit | Q BC | Quantity | Q WC | R BC        | Rate        | R WC        |
|------------------------------------------------------------------------------------|------|------|----------|------|-------------|-------------|-------------|
| item                                                                               | Unit | QBC  | Quantity | QVVC | K BC        | Nale        | R VVC       |
| Fabrication, supply and<br>construction of 450 mm<br>dia outlet pipe               | Item | 1.00 | 1.00     | 1.00 | \$4,700.00  | \$5,000.00  | \$5,500.00  |
| Supply and installation<br>of all valves, fittings for<br>the outlet works         | Item | 1.00 | 1.00     | 1.00 | \$28,000.00 | \$30,000.00 | \$35,000.00 |
| Fabrication, supply and<br>installation of<br>trashracks                           | Item | 0.00 | 0.00     | 0.00 | \$4,000.00  | \$5,000.00  | \$8,000.00  |
| Fabrication, supply and<br>istallation of access<br>platforms, railing,<br>fencing | Item | 1.00 | 1.00     | 1.00 | \$5,000.00  | \$10,000.00 | \$15,000.00 |
| Testing and<br>commissioning and<br>handover to TAMS                               | Item | 1.00 | 1.00     | 1.00 | \$20,000.00 | \$25,000.00 | \$30,000.00 |
| Operation and maintenance manuals                                                  | Item | 1.00 | 1.00     | 1.00 | \$8,000.00  | \$10,000.00 | \$12,000.00 |
| Supply and install<br>safety equipment and<br>signage                              | Item | 1.00 | 1.00     | 1.00 | \$8,000.00  | \$10,000.00 | \$12,000.00 |

| Group : Owners Costs            |      |      |          |      |                |                |                |
|---------------------------------|------|------|----------|------|----------------|----------------|----------------|
| Item                            | Unit | Q BC | Quantity | Q WC | R BC           | Rate           | R WC           |
| PAP, site surveillance.         | Item | 1.00 | 1.00     | 1.00 | \$700,000.00   | \$800,000.00   | \$1,000,000.00 |
| Communications management       | Item | 1.00 | 1.00     | 1.00 | \$75,000.00    | \$100,000.00   | \$125,000.00   |
| PCW Design                      | Item | 1.00 | 1.00     | 1.00 | \$17,000.00    | \$20,000.00    | \$25,000.00    |
| Insurance                       | Item | 1.00 | 1.00     | 1.00 | \$90,000.00    | \$100,000.00   | \$150,000.00   |
| Shared Services<br>Design       | Item | 1.00 | 1.00     | 1.00 | \$35,000.00    | \$40,000.00    | \$50,000.00    |
| Design costs                    | Item | 1.00 | 1.00     | 1.00 | \$1,250,000.00 | \$1,300,000.00 | \$1,400,000.00 |
| PCW Construction                | Item | 1.00 | 1.00     | 1.00 | \$180,000.00   | \$200,000.00   | \$220,000.00   |
| Shared services<br>Construction | Item | 1.00 | 1.00     | 1.00 | \$550,000.00   | \$600,000.00   | \$700,000.00   |



# Histogram Wednesday, February 24, 2016

Printed: Wednesday, February 24, 2016 Count iteration: 10000



#### Project: Isabella Weir Cost Estimate FSP Report 24 Feb 2016

© RiskTools Pty Ltd

APPENDIX G RISK REGISTER



# **By Responsible Person Report**

| Filter Information     | n:                                                                                                                  |            |                                                                                      | Date of Report: 1/11/2015                                   | 5    |
|------------------------|---------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Project Type:          |                                                                                                                     |            |                                                                                      | Project Status: Active                                      |      |
| Project:               | SMEC Isabella Weir Project                                                                                          |            |                                                                                      |                                                             |      |
| Project Group:         |                                                                                                                     |            |                                                                                      |                                                             |      |
| Project Manager:       |                                                                                                                     |            |                                                                                      |                                                             |      |
| Risk Area:             | All                                                                                                                 |            | Status: All                                                                          |                                                             |      |
| Risk Category:         | All                                                                                                                 |            | Risk Profile: All                                                                    |                                                             |      |
| Risk Question:         | All                                                                                                                 |            |                                                                                      |                                                             |      |
| Risk Name              |                                                                                                                     | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                       | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost |
| Responsible F          | Person: SMEC                                                                                                        |            |                                                                                      |                                                             |      |
|                        | a = Demolition<br>Category = D1                                                                                     |            |                                                                                      |                                                             |      |
| construct<br>work on s | ty of anchor design and<br>ion increases length of the<br>site increasing the risk of<br>he worksite and associated |            | Likely / Moderate                                                                    | Likely / Moderate                                           |      |
| Sta                    | andard Treatment?                                                                                                   | Completed? | review the design to investigate opportunities to simplify the construction process. | 31/12/2015                                                  | \$0  |

| Risk Name                                                                                                                                 | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                                                                      | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost      |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|
| 2 complexity of permanent concrete<br>works significantly increases time on<br>site leading to flooding and associated<br>risks           |            | Likely / Moderate                                                                                                                                                   | Unlikely / Moderate                                         |           |
| Standard Treatment?                                                                                                                       | Completed? | review the design to investigate opportunities to optimise the construction process.                                                                                | 31/12/2015                                                  | \$0       |
|                                                                                                                                           |            |                                                                                                                                                                     | possible low level outlet pipe of                           | luring co |
| 3 during a flood event equipment is not<br>able to be moved out of working area<br>in time and serious damage to<br>equipment occurs.     |            | Unlikely / Minor                                                                                                                                                    | Unlikely / Minor                                            |           |
| Standard Treatment?                                                                                                                       | Completed? | SMEC to investigate alternatives which eliminate flow from the site.                                                                                                | 31/12/2015                                                  | \$0       |
| 4 exposure to flash flooding greater than<br>60 cum/s before the new abutment<br>walls are complete result in serious<br>injury or death. |            | Rare / Severe                                                                                                                                                       | Rare / Severe                                               |           |
| Standard Treatment?                                                                                                                       | Completed? | SMEC to further develop the 3D construction<br>sequence model to be used to gain a better<br>understanding of the process and to be used for<br>the tender process. | 31/12/2105                                                  | \$0       |
| 5 failure of cofferdam leads to sudden influx of water causing serious injury or death.                                                   |            | Unlikely / Severe                                                                                                                                                   | Unlikely / Severe                                           |           |
| Standard Treatment?                                                                                                                       | Completed? | identify specific high risk temporary works to highlight in tender documents.                                                                                       | 31/12/2015                                                  | \$0       |
| 6 personnel are not able to be evacuated<br>in time during a flood leading to serious<br>injury or death.                                 |            | Rare / Severe                                                                                                                                                       | Rare / Severe                                               |           |
| ◎ RiskTools Pty Ltd                                                                                                                       |            | By Responsible Person Report                                                                                                                                        | Page 2                                                      | of 4      |

| Risk Name                                                                                                                                  | Notes                                 | Initial Likelihood / Impact<br>Risk Treatments                                                                                                                                            | Current Likelihood / Impact<br>Due Date / | Cost |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| Standard Treatment?                                                                                                                        | Completed?                            | SMEC to investigate alternatives which eliminate flow from the site.                                                                                                                      | Resource Notes<br>31/12/2015              | \$0  |
| 7 the construction workers or the public become sick due to the proximity of the sediment.                                                 | including impact of high winds        | Possible / Major                                                                                                                                                                          | Unlikely / Major                          |      |
| Standard Treatment?                                                                                                                        | Completed?                            | incorporate all measures in relation to handling and<br>moving of sediment to be included in the CEMP. A<br>draft CEMP to be developed during the design<br>phase to confirm feasibility. | 31/12/2015                                | \$0  |
| 8 the demolition/excavation process<br>causes undetected weakening of to the<br>existing remaining structure.                              | would lead to collapse in the future. | Possible / Major                                                                                                                                                                          | Unlikely / Major                          |      |
| Standard Treatment?                                                                                                                        | Completed?                            | determine and recommend vibration limits and monitor during construction.                                                                                                                 | 31/12/2015                                | \$0  |
| 9 the demolition/excavation weakens the<br>remaining structure once the<br>abutments are removed causing it to<br>collapse during a flood. |                                       | Unlikely / Severe                                                                                                                                                                         | Rare / Severe                             |      |
| Standard Treatment?                                                                                                                        | Completed?                            | determine and recommend vibration limits and monitor during construction.                                                                                                                 | 31/12/2015                                | \$0  |
| Standard Treatment?                                                                                                                        | Completed?                            | detailed structural analysis of the wall as soon as the site is drained.                                                                                                                  | 31/12/2015                                | \$0  |
| Standard Treatment?                                                                                                                        | Completed?                            | inspection of the exposed structure and foundations as soon as possible to confirm design assumptions.                                                                                    | 31/12/2015                                | \$0  |

| Risk Name                                                                                                                                | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                                                                                                                           | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost |
|------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Standard Treatment?                                                                                                                      | Completed? | conduct an analysis of the abutmentand labrynths wall in current condition and estimate strength with backfill removed.                                                                                                  | 15/12/2015                                                  | \$0  |
| 10 there is a confined space access<br>incident leading to serious injury or<br>death during both construction and<br>operations phases. |            | Unlikely / Major                                                                                                                                                                                                         | Rare / Major                                                |      |
| Standard Treatment?                                                                                                                      | Completed? | the design and construction of the value chamber<br>to be developed and reviewed in consultation with<br>the dam operator and identify it as a confined<br>space to the operator and identify this in the O&M<br>manual. | 31/12/2015                                                  | \$0  |



# Risk Treatment priority Report

| Filter Inform | ation:                                                                                                                                                                                                                   | Da                 | ate of Report: 1/11/2015 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| Project Type: | :                                                                                                                                                                                                                        | Pr                 | roject Status: Active    |
| Project:      | SMEC Isabella Weir Project                                                                                                                                                                                               |                    |                          |
| Project Group | p:                                                                                                                                                                                                                       |                    |                          |
| Project Mana  | iger:                                                                                                                                                                                                                    |                    |                          |
| Risk Area:    | All                                                                                                                                                                                                                      | Status: All        |                          |
| Risk Categor  | y: All Risk                                                                                                                                                                                                              | Profile: All       |                          |
| Risk Questio  | n: All                                                                                                                                                                                                                   |                    |                          |
| Note: Only A  | nalysed Risk Items / Treatments are listed.                                                                                                                                                                              |                    |                          |
| # of Risl     | k Treatment                                                                                                                                                                                                              |                    |                          |
| Ris           | k Name                                                                                                                                                                                                                   | Responsible        | Risk Profile             |
|               | ent to investigate ECI style of contract to achieve con<br>ution.                                                                                                                                                        | tractor input into | construction             |
| the           | mplexity of anchor design and construction increases length of<br>work on site increasing the risk of flooding the worksite and<br>sociated risks.                                                                       | Client             | Significant Risk         |
|               | mplexity of permanent concrete works significantly increases time<br>site leading to flooding and associated risks                                                                                                       | e Client           | Moderate Risk            |
| du<br>wo      | ring a flood event equipment is not able to be moved out of rking area in time and serious damage to equipment occurs.                                                                                                   | Client             | Low Risk                 |
|               | posure to flash flooding greater than 60 cum/s before the new utment walls are complete result in serious injury or death.                                                                                               | Client             | Significant Risk         |
| sig           | ms that cannot be identified until the water is drained have a<br>inificant impact on the scope required to complete the works and<br>tend the duration which leads to compressed timeframe resulting<br>serious injury. | Client             | Significant Risk         |
|               | rsonnel are not able to be evacuated in time during a flood diding to serious injury or death.                                                                                                                           | Client             | Significant Risk         |
|               | e tight program will lead to increased safety risks due to<br>quirement to work more quickly leading to serious injury or death.                                                                                         | Client             | Significant Risk         |
| 3 Сог         | ntract requirement for evacuation plans to be provide                                                                                                                                                                    | d prior to work o  | commences.               |
|               | ring a flood event equipment is not able to be moved out of rking area in time and serious damage to equipment occurs.                                                                                                   | Client             | Low Risk                 |
|               | posure to flash flooding greater than 60 cum/s before the new utment walls are complete result in serious injury or death.                                                                                               | Client             | Significant Risk         |
| lea           | rsonnel are not able to be evacuated in time during a flood<br>Iding to serious injury or death.                                                                                                                         | Client             | Significant Risk         |
|               | ent to ensure the Contractor follows the established A<br>luding workers having appropriate qualifications.                                                                                                              | ACT Governmen      | t WHS protocols          |
| an            | overhead power cable is struck leading to serious injury or death                                                                                                                                                        | Client             | Significant Risk         |
|               | ere is a confined space access incident leading to serious injury death during both construction and operations phases.                                                                                                  | Client             | Significant Risk         |
|               | ent to review skills and expertise of certifier and incluent to require the engagement of an alternative certifie                                                                                                        |                    | documents the            |
|               | construction worker falls from a height leading to serious injury or ath.                                                                                                                                                | Client             | High Risk                |
| fail          | lure of formwork during construction leads to serious injury.                                                                                                                                                            | Client             | High Risk                |
| 2 con         | nduct first site sampling as soon as dam has been dra                                                                                                                                                                    | ained.             |                          |

2 conduct first site sampling as soon as dam has been drained.

Filter Information:

 Project Type:
 SMEC Isabella Weir Project

 Project Group:
 Froject Manager:

 Risk Area:
 All

 Status:
 All

 Risk Question:
 All

Note: Only Analysed Risk Items / Treatments are listed.

### # of Risk Treatment

**Risk Name** Responsible **Risk Profile** either a construction worker or a member of the public is exposed to Low Risk Client asbestos before it is identified. the construction workers or the public become sick due to the Client Significant Risk proximity of the sediment. 2 determine and recommend vibration limits and monitor during construction. the demolition/excavation process causes undetected weakening of SMEC Significant Risk to the existing remaining structure. the demolition/excavation weakens the remaining structure once the SMEC Significant Risk abutments are removed causing it to collapse during a flood. 2 develop sampling program for construction works to include in contractor scope of works. either a construction worker or a member of the public is exposed to Client Low Risk asbestos before it is identified. Significant Risk the construction workers or the public become sick due to the Client proximity of the sediment. 2 If ECI is not used require the tenderers to submit a detailed methodology and weight safety aspects of methodology highly in the tender evaluation. exposure to flash flooding greater than 60 cum/s before the new Client Significant Risk abutment walls are complete result in serious injury or death. personnel are not able to be evacuated in time during a flood Client Significant Risk leading to serious injury or death. 2 include the vibration limits within the statement of requirements in the tender documets. Significant Risk the demolition/excavation process causes undetected weakening of Client to the existing remaining structure. the demolition/excavation weakens the remaining structure once the Client Significant Risk abutments are removed causing it to collapse during a flood. 2 SMEC to investigate alternatives which eliminate flow from the site. SMEC Low Risk during a flood event equipment is not able to be moved out of working area in time and serious damage to equipment occurs. SMEC personnel are not able to be evacuated in time during a flood Significant Risk leading to serious injury or death.

Project Status: Active



# **By Responsible Person Report**

| Filter Informatio | n:                                                    |            |                                                                                                                                                             | Date of Report: 1/11/2015                                   | 5    |
|-------------------|-------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Project Type:     |                                                       |            |                                                                                                                                                             | Project Status: Active                                      |      |
| Project:          | SMEC Isabella Weir Projec                             | t          |                                                                                                                                                             |                                                             |      |
| Project Group:    |                                                       |            |                                                                                                                                                             |                                                             |      |
| Project Manager:  | :                                                     |            |                                                                                                                                                             |                                                             |      |
| Risk Area:        | All                                                   |            | Status: All                                                                                                                                                 |                                                             |      |
| Risk Category:    | All                                                   |            | Risk Profile: All                                                                                                                                           |                                                             |      |
| Risk Question:    | All                                                   |            |                                                                                                                                                             |                                                             |      |
| Risk Name         |                                                       | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                                                              | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost |
| Responsible F     | Person: Client                                        |            |                                                                                                                                                             |                                                             |      |
|                   | ea = Demolition<br>Category = D1                      |            |                                                                                                                                                             |                                                             |      |
|                   | uction worker falls from a ading to serious injury or |            | Possible / Severe                                                                                                                                           | Possible / Severe                                           |      |
| Sta               | andard Treatment?                                     | Completed? | Client to ensure the Contractor follows the<br>established ACT Government WHS protocols<br>including workers having working from heights<br>qualifications. | 31/12/2015                                                  | \$0  |

| Risk Name                                                                                                                                                          | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                                                                | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Standard Treatment?                                                                                                                                                | Completed? | Client to review skills and expertise of certifier and<br>include in the tender documents the right to require<br>the engagement of an alternative certifier. | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                                                | Completed? | construct safety barriers at the top of any exposed<br>embankments. Include this requirement in the<br>tender documents.                                      | 31/12/2015                                                  | \$0  |
| 2 a maintenance contractor has an<br>incident where a item of machinery<br>enters the water.                                                                       |            | Rare / Major                                                                                                                                                  | Rare / Major                                                |      |
| Standard Treatment?                                                                                                                                                | Completed? | the interface design to consider creating a buffer<br>between maintanance activities and permanent<br>water zones.                                            | 31/12/2015                                                  | \$0  |
| 3 an overhead power cable is struck leading to serious injury or death                                                                                             |            | Possible / Severe                                                                                                                                             | Rare / Severe                                               |      |
| Standard Treatment?                                                                                                                                                | Completed? | Client to ensure the Contractor follows the<br>established ACT Government WHS protocols<br>including workers having appropriate qualifications.               | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                                                | Completed? | fence off power line, and require access permits to<br>enter within the fenced area. Include this<br>requirement in the tender documents.                     | 31/12/2015                                                  | \$0  |
| 4 complexity of anchor design and<br>construction increases length of the<br>work on site increasing the risk of<br>flooding the worksite and associated<br>risks. |            | Likely / Moderate                                                                                                                                             | Likely / Moderate                                           |      |
| Standard Treatment?                                                                                                                                                | Completed? | Client to investigate ECI style of contract to achieve contractor input into construction solution.                                                           | 31/12/2015                                                  | \$0  |

1241

| Risk Name                                                                                                                             | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                                                                                  | Current Likelihood / Impac<br>Due Date /<br>Resource Notes | t<br>Cost |
|---------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|
| 5 complexity of permanent concrete<br>works significantly increases time on<br>site leading to flooding and associated<br>risks       |            | Likely / Moderate                                                                                                                                                               | Unlikely / Moderate                                        |           |
| Standard Treatment?                                                                                                                   | Completed? | Client to investigate ECI style of contract to achieve contractor input into construction solution.                                                                             | 31/12/2015                                                 | \$0       |
| 6 during a flood event equipment is not<br>able to be moved out of working area<br>in time and serious damage to<br>equipment occurs. |            | Unlikely / Minor                                                                                                                                                                | Unlikely / Minor                                           |           |
| Standard Treatment?                                                                                                                   | Completed? | Client to investigate ECI style of contract to achieve contractor input into construction solution.                                                                             | 31/12/2015                                                 | \$0       |
| Standard Treatment?                                                                                                                   | Completed? | Contract requirement for evacuation plans to be provided prior to work commences.                                                                                               | 31/12/2015                                                 | \$0       |
| Standard Treatment?                                                                                                                   | Completed? | If ECI is not used require the tenderers should be<br>required to submit a detailed methodology and<br>weight safety aspects of methodology highly in the<br>tender evaluation. | 31/12/2015                                                 | \$0       |
| 7 either a construction worker or a member of the public is exposed to asbestos before it is identified.                              |            | Possible / Minor                                                                                                                                                                | Unlikely / Minor                                           |           |
| Standard Treatment?                                                                                                                   | Completed? | conduct first site sampling as soon as dam has been drained.                                                                                                                    | 31/12/2015                                                 | \$0       |
|                                                                                                                                       |            |                                                                                                                                                                                 | including ACM                                              |           |
| Standard Treatment?                                                                                                                   | Completed? | undertake desktop search of historic records                                                                                                                                    | 31/12/2015                                                 | \$0       |
| Standard Treatment?                                                                                                                   | Completed? | develop sampling program for construction works to include in contractor scope of works.                                                                                        | 31/12/2015                                                 | \$0       |
|                                                                                                                                       |            |                                                                                                                                                                                 | for ACM                                                    |           |
| © RiskTools Pty Ltd                                                                                                                   |            | By Responsible Person Report                                                                                                                                                    | Page                                                       | 3 of 8    |

| Risk Name                                                                                                                                 | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                                                      | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Standard Treatment?                                                                                                                       | Completed? | develop unexpected finds protocol.                                                                                                                  | 31/12/2015                                                  | \$0  |
| 8 exposure to flash flooding greater than<br>60 cum/s before the new abutment<br>walls are complete result in serious<br>injury or death. |            | Rare / Severe                                                                                                                                       | Rare / Severe                                               |      |
| Standard Treatment?                                                                                                                       | Completed? | Client to investigate ECI style of contract to achieve contractor input into construction solution.                                                 | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                       | Completed? | Contract requirement for evacuation plans to be provided prior to work commences.                                                                   | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                       | Completed? | If ECI is not used require the tenderers to submit a detailed methodology and weight safety aspects of methodology highly in the tender evaluation. | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                       | Completed? | Consider additional protection for the period whilst the new abutment wall are bieng constructed.                                                   | 31/12/2015                                                  | \$0  |
| 9 failure of cofferdam leads to sudden<br>influx of water causing serious injury or<br>death.                                             |            | Unlikely / Severe                                                                                                                                   | Unlikely / Severe                                           |      |
| Standard Treatment?                                                                                                                       | Completed? | ensure all temporary works are designed to meet<br>the dam regulator and highlight in tender docs.                                                  | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                       | Completed? | include independent inspection regime to monitor quality of temporary works.                                                                        | 31/12/2015                                                  | \$0  |
| 10 failure of formwork during construction leads to serious injury.                                                                       |            | Possible / Severe                                                                                                                                   | Unlikely / Severe                                           |      |

| Risk Name                                                                                                                                                                                                                                   | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                                                                                                                        | Current Likelihood / Impact<br>Due Date / | Cost |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
|                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                       | Resource Notes                            |      |
| Standard Treatment?                                                                                                                                                                                                                         | Completed? | Client to review skills and expertise of certifier and include in the tender documents the right to require the engagement of an alternative certifier.                                                               | 31/12/2015                                | \$0  |
| 11 items that cannot be identified until the<br>water is drained have a significant<br>impact on the scope required to<br>complete the works and extend the<br>duration which leads to compressed<br>timeframe resulting or serious injury. |            | Possible / Major                                                                                                                                                                                                      | Possible / Moderate                       |      |
| Standard Treatment?                                                                                                                                                                                                                         | Completed? | develop a response action plan for a range of<br>scenarios and possible solutions and include the<br>capability for those solutions to be delivered.<br>Include scenarios within the tender response<br>requirements. | 31/12/2015                                | \$0  |
|                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                       | including securing any approva            | als. |
| Standard Treatment?                                                                                                                                                                                                                         | Completed? | Client to investigate ECI style of contract to achieve contractor input into construction solution.                                                                                                                   | 31/12/2015                                | \$0  |
| 12 personnel are not able to be evacuated<br>in time during a flood leading to serious<br>injury or death.                                                                                                                                  |            | Rare / Severe                                                                                                                                                                                                         | Rare / Severe                             |      |
| Standard Treatment?                                                                                                                                                                                                                         | Completed? | Client to investigate ECI style of contract to achieve contractor input into construction solution.                                                                                                                   | 31/12/2015                                | \$0  |
| Standard Treatment?                                                                                                                                                                                                                         | Completed? | Contract requirement for evacuation plans to be provided prior to work commences.                                                                                                                                     | 31/12/2015                                | \$0  |
| Standard Treatment?                                                                                                                                                                                                                         | Completed? | If ECI is not used require the tenderers to submit a detailed methodology and weight safety aspects of methodology highly in the tender evaluation.                                                                   | 31/12/2015                                | \$0  |
| 13 post completion a member of the public is injured adjacent to the works.                                                                                                                                                                 |            | Possible / Major                                                                                                                                                                                                      | Possible / Major                          |      |
| © RiskTools Pty Ltd                                                                                                                                                                                                                         |            | By Responsible Person Report                                                                                                                                                                                          | Page 5                                    | of 8 |

| Risk Name                                                                                                                          | Notes                                 | Initial Likelihood / Impact<br>Risk Treatments                                                                                                             | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost     |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------|
| Standard Treatment?                                                                                                                | Completed?                            | install signage and handrails to meet the requirements of the new asset owner (TAMS) and seek sign-off of the complete design by TAMS.                     | 31/12/2015                                                  | \$0      |
| 14 the construction workers or the public become sick due to the proximity of the sediment.                                        | including impact of high winds        | Possible / Major                                                                                                                                           | Unlikely / Major                                            |          |
| Standard Treatment?                                                                                                                | Completed?                            | communicate findings or sampling already undertaken and confirm it meets requirements.                                                                     | 31/12/2015                                                  | \$0      |
|                                                                                                                                    |                                       |                                                                                                                                                            | contractors, stakeholders and                               | statutor |
| Standard Treatment?                                                                                                                | Completed?                            | develop sampling program for construction works to include in contractor scope of works.                                                                   | 31/12/2015                                                  | \$0      |
| Standard Treatment?                                                                                                                | Completed?                            | conduct first site sampling as soon as dam has been drained.                                                                                               | 31/12/2015                                                  | \$0      |
| Standard Treatment?                                                                                                                | Completed?                            | identify appropriate stockpile sites including routes<br>from work site to stockpiling locations and include<br>specific requirements in tender documents. | 31/12/2015                                                  | \$0      |
| Standard Treatment?                                                                                                                | Completed?                            | develop plan to prevent public access to high risk areas.                                                                                                  | 31/12/2015                                                  | \$0      |
|                                                                                                                                    |                                       |                                                                                                                                                            | including sediment                                          |          |
| 15 the demolition/excavation process<br>causes undetected weakening of to the<br>existing remaining structure.                     | would lead to collapse in the future. | Possible / Major                                                                                                                                           | Unlikely / Major                                            |          |
| Standard Treatment?                                                                                                                | Completed?                            | include the vibration limits within the statement of requirements in the tender documets.                                                                  | 31/12/2015                                                  | \$0      |
| 16 the demolition/excavation weakens the remaining structure once the abutments are removed causing it to collapse during a flood. |                                       | Unlikely / Severe                                                                                                                                          | Rare / Severe                                               |          |

| Risk Name                                                                                                                                     | Notes                                    | Initial Likelihood / Impact<br>Risk Treatments                                                                                                          | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Standard Treatment?                                                                                                                           | Completed?                               | include the vibration limits within the statement of requirements in the tender documets.                                                               | 31/12/2015                                                  | \$0  |
| 17 the tight program will lead to increased<br>safety risks due to requirement to work<br>more quickly leading to serious injury<br>or death. | multiple activies within a confined area | Unlikely / Major                                                                                                                                        | Unlikely / Major                                            |      |
| Standard Treatment?                                                                                                                           | Completed?                               | Client to investigate ECI style of contract to achieve contractor input into construction solution.                                                     | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                           | Completed?                               | Review opportunities for pre-site activities and<br>include a requirement for tenderers to address this<br>in their methodology response in the tender. | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                           | Completed?                               | closely manage the program including all preparatory activities that can be undertaken prior to contractor engagement.                                  | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                           | Completed?                               | refine client construction sequence proposal to assist/guide tenderers.                                                                                 | 31/12/2015                                                  | \$0  |
| Standard Treatment?                                                                                                                           | Completed?                               | coordinate the program with the wetlands project to prevent reduced time available to undertake the construction.                                       | 31/12/2015                                                  | \$0  |
| 18 there is a confined space access<br>incident leading to serious injury or<br>death during both construction and<br>operations phases.      |                                          | Unlikely / Major                                                                                                                                        | Rare / Major                                                |      |
| Standard Treatment?                                                                                                                           | Completed?                               | Client to ensure the Contractor follows the established ACT Government WHS protocols including workers having appropriate qualifications.               | 31/12/2015                                                  | \$0  |

| Risk Name           | Notes      | Initial Likelihood / Impact<br>Risk Treatments                                                                         | Current Likelihood / Impact<br>Due Date /<br>Resource Notes | Cost |
|---------------------|------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Standard Treatment? | Completed? | Identify the value chamber as a confined space (in the tender documents )once it is completed and testing is underway. | 31/12/2015                                                  | \$0  |



# **All Risks Summary Report**

| Filter Information                     | :                                                                                                 |                              |                        | Date of    | Report: 1/11/2015     |
|----------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|------------------------|------------|-----------------------|
| Project Type:                          |                                                                                                   |                              |                        | Project    | Status: <u>Active</u> |
| Project:                               | SMEC Isabella Weir Project                                                                        |                              |                        |            |                       |
| Project Group:                         |                                                                                                   |                              |                        |            |                       |
| Project Manager:                       |                                                                                                   |                              |                        |            |                       |
| Risk Area:                             | All                                                                                               |                              | Status: All            |            |                       |
| Risk Category:                         | All                                                                                               |                              | Risk Profile: All      |            |                       |
| Risk Question:                         | All                                                                                               |                              |                        |            |                       |
| <u>Open Risk</u>                       |                                                                                                   |                              |                        |            |                       |
| Area and Catego<br>Risk Name           | ry                                                                                                | Initial<br>Risk Rating       | Current<br>Risk Rating |            |                       |
| Risk Area: D                           | emolition                                                                                         |                              |                        |            |                       |
| Risk Cate                              | egory: <b>D1</b>                                                                                  |                              |                        |            |                       |
| 1 a constru<br>injury or o             | ction worker falls from a height leading to serious death.                                        | High Risk                    | <u>High Risk</u>       |            |                       |
| Risk Treatment(s):                     |                                                                                                   |                              | Responsible Person     | Due Date   | Completed             |
|                                        | ills and expertise of certifier and include in the tender documents the<br>alternative certifier. | e right to require the       | Client                 | 31/12/2015 |                       |
| construct safety ba<br>documents.      | arriers at the top of any exposed embankments. Include this require                               | ment in the tender           | Client                 | 31/12/2015 |                       |
| Client to ensure th working from heigh | e Contractor follows the established ACT Government WHS protoconts qualifications.                | ols including workers having | Client                 | 31/12/2015 |                       |

| Open Risk                                                                                                                                                                                                                                              |                             |                          |                                        |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|----------------------------------------|-----------|
| Area and Category<br>Risk Name                                                                                                                                                                                                                         | Initial<br>Risk Rating      | Current<br>Risk Rating   |                                        |           |
| 2 failure of cofferdam leads to sudden influx of water causing serious injury or death.                                                                                                                                                                | High Risk                   | <u>High Risk</u>         |                                        |           |
| Risk Treatment(s):                                                                                                                                                                                                                                     |                             | Responsible Person       | Due Date                               | Completed |
| identify specific high risk temporary works to highlight in tender documents.<br>ensure all temporary works are designed to meet the dam regulator and highlight in te<br>include independent inspection regime to monitor quality of temporary works. | ender docs.                 | SMEC<br>Client<br>Client | 31/12/2015<br>31/12/2015<br>31/12/2015 |           |
| 3 failure of formwork during construction leads to serious injury.                                                                                                                                                                                     | High Risk                   | <u>High Risk</u>         |                                        |           |
| Risk Treatment(s):                                                                                                                                                                                                                                     |                             | Responsible Person       | Due Date                               | Completed |
| Client to review skills and expertise of certifier and include in the tender documents the engagement of an alternative certifier.                                                                                                                     | ne right to require the     | Client                   | 31/12/2015                             |           |
| 4 post completion a member of the public is injured adjacent to<br>the works.                                                                                                                                                                          | High Risk                   | <u>High Risk</u>         |                                        |           |
| Risk Treatment(s):                                                                                                                                                                                                                                     |                             | Responsible Person       | Due Date                               | Completed |
| install signage and handrails to meet the requirements of the new asset owner (TAMS complete design by TAMS.                                                                                                                                           | S) and seek sign-off of the | Client                   | 31/12/2015                             |           |
| Risk Area: <b>Demolition</b>                                                                                                                                                                                                                           |                             |                          |                                        |           |
| Risk Category: D1                                                                                                                                                                                                                                      |                             |                          |                                        |           |
| 5 a maintenance contractor has an incident where a item of machinery enters the water.                                                                                                                                                                 | Significant Risk            | Significant Risk         |                                        |           |
| Risk Treatment(s):                                                                                                                                                                                                                                     |                             | Responsible Person       | Due Date                               | Completed |
| the interface design to consider creating a buffer between maintanance activities and                                                                                                                                                                  | permanent water zones.      | Client                   | 31/12/2015                             |           |
|                                                                                                                                                                                                                                                        |                             |                          |                                        |           |

| open Risk                                                                                                                                                    |                              |                        |            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|------------|-----------|
| area and Category<br>Risk Name                                                                                                                               | Initial<br>Risk Rating       | Current<br>Risk Rating |            |           |
| 6 an overhead power cable is struck leading to serious injury or                                                                                             | High Diak                    | Significant Dick       |            |           |
| 6 an overhead power cable is struck leading to serious injury or<br>death                                                                                    | High Risk                    | Significant Risk       |            |           |
| isk Treatment(s):                                                                                                                                            |                              | Responsible Person     | Due Date   | Completed |
| lient to ensure the Contractor follows the established ACT Government WHS protoco                                                                            | ols including workers having | Client                 | 31/12/2015 |           |
| nce off power line, and require access permits to enter within the fenced area. Includinder documents.                                                       | de this requirement in the   | Client                 | 31/12/2015 |           |
| 7 complexity of anchor design and construction increases length<br>of the work on site increasing the risk of flooding the worksite<br>and associated risks. | Significant Risk             | Significant Risk       |            |           |
| isk Treatment(s):                                                                                                                                            |                              | Responsible Person     | Due Date   | Completed |
| ient to investigate ECI style of contract to achieve contractor input into construction                                                                      | solution.                    | Client                 | 31/12/2015 |           |
| view the design to investigate opportunities to simplify the construction process.                                                                           |                              | SMEC                   | 31/12/2015 |           |
| 8 exposure to flash flooding greater than 60 cum/s before the new<br>abutment walls are complete result in serious injury or death.                          | Significant Risk             | Significant Risk       |            |           |
| sk Treatment(s):                                                                                                                                             |                              | Responsible Person     | Due Date   | Completed |
| ontract requirement for evacuation plans to be provided prior to work commences.                                                                             |                              | Client                 | 31/12/2015 |           |
| ECI is not used require the tenderers to submit a detailed methodology and weight s<br>ethodology highly in the tender evaluation.                           | safety aspects of            | Client                 | 31/12/2015 |           |
| onsider additional protection for the period whilst the new abutment wall are bieng co                                                                       |                              | Client                 | 31/12/2015 |           |
| ient to investigate ECI style of contract to achieve contractor input into construction                                                                      |                              | Client                 | 31/12/2015 |           |
| MEC to further develop the 3D construction sequence model to be used to gain a be<br>occess and to be used for the tender process.                           | tter understanding of the    | SMEC                   | 31/12/2105 |           |

| Dpen Risk                                                                                                                                                                                                                                       |                         |                         |                          |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|--------------------------|-----------|
| Area and Category<br>Risk Name                                                                                                                                                                                                                  | Initial<br>Risk Rating  | Current<br>Risk Rating  |                          |           |
| <sup>9</sup> items that cannot be identified until the water is drained have a<br>significant impact on the scope required to complete the works<br>and extend the duration which leads to compressed timeframe<br>resulting or serious injury. | High Risk               | <u>Significant Risk</u> |                          |           |
| isk Treatment(s):                                                                                                                                                                                                                               |                         | Responsible Person      | Due Date                 | Completed |
| ient to investigate ECI style of contract to achieve contractor input into construction sevelop a response action plan for a range of scenarios and possible solutions and include scenarios within the tender response requirements.           |                         | Client<br>Client        | 31/12/2015<br>31/12/2015 |           |
| 10 personnel are not able to be evacuated in time during a flood<br>leading to serious injury or death.                                                                                                                                         | Significant Risk        | Significant Risk        |                          |           |
| sk Treatment(s):                                                                                                                                                                                                                                |                         | Responsible Person      | Due Date                 | Completed |
| MEC to investigate alternatives which eliminate flow from the site.<br>ECI is not used require the tenderers to submit a detailed methodology and weight sa<br>ethodology highly in the tender evaluation.                                      | fety aspects of         | SMEC<br>Client          | 31/12/2015<br>31/12/2015 |           |
| contract requirement for evacuation plans to be provided prior to work commences.<br>lient to investigate ECI style of contract to achieve contractor input into construction so                                                                | olution.                | Client<br>Client        | 31/12/2015<br>31/12/2015 |           |
| 11 the construction workers or the public become sick due to the proximity of the sediment.                                                                                                                                                     | High Risk               | Significant Risk        |                          |           |
| isk Treatment(s):                                                                                                                                                                                                                               |                         | Responsible Person      | Due Date                 | Completed |
| entify appropriate stockpile sites including routes from work site to stockpiling location<br>quirements in tender documents.                                                                                                                   | ns and include specific | Client                  | 31/12/2015               |           |
| ommunicate findings or sampling already undertaken and confirm it meets requirement                                                                                                                                                             | nts.                    | Client                  | 31/12/2015               |           |
| evelop plan to prevent public access to high risk areas.                                                                                                                                                                                        |                         | Client                  | 31/12/2015               |           |
| corporate all measures in relation to handling and moving of sediment to be included i<br>EMP to be developed during the design phase to confirm feasibility.                                                                                   | in the CEMP. A draft    | SMEC                    | 31/12/2015               |           |
| onduct first site sampling as soon as dam has been drained.                                                                                                                                                                                     |                         | Client                  | 31/12/2015               |           |
| evelop sampling program for construction works to include in contractor scope of work                                                                                                                                                           |                         | Client                  | 31/12/2015               |           |

© RiskTools Pty Ltd

| en Risk                                                                                                                                                     |                                  |                        |                          |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|--------------------------|-----------|
| a and Category<br>sk Name                                                                                                                                   | Initial<br>Risk Rating           | Current<br>Risk Rating |                          |           |
| 2 the demolition/excavation process causes undetected<br>weakening of to the existing remaining structure.                                                  | High Risk                        | Significant Risk       |                          |           |
| <pre>x Treatment(s):</pre>                                                                                                                                  |                                  | Responsible Person     | Due Date                 | Completed |
| ude the vibration limits within the statement of requirements in the tender docur<br>ermine and recommend vibration limits and monitor during construction. | mets.                            | Client<br>SMEC         | 31/12/2015<br>31/12/2015 |           |
| the demolition/excavation weakens the remaining structure<br>once the abutments are removed causing it to collapse during<br>flood.                         | High Risk<br>a                   | Significant Risk       |                          |           |
| <pre>&lt; Treatment(s):</pre>                                                                                                                               |                                  | Responsible Person     | Due Date                 | Completed |
| duct an analysis of the abutmentand labrynths wall in current condition and esti<br>oved.                                                                   | imate strength with backfill     | SMEC                   | 15/12/2015               |           |
| ermine and recommend vibration limits and monitor during construction.                                                                                      |                                  | SMEC                   | 31/12/2015               |           |
| ude the vibration limits within the statement of requirements in the tender docur                                                                           | mets.                            | Client                 | 31/12/2015               |           |
| ailed structural analysis of the wall as soon as the site is drained.                                                                                       |                                  | SMEC                   | 31/12/2015               |           |
| pection of the exposed structure and foundations as soon as possible to confirm                                                                             | n design assumptions.            | SMEC                   | 31/12/2015               |           |
| the tight program will lead to increased safety risks due to<br>requirement to work more quickly leading to serious injury or<br>death.                     | Significant Risk                 | Significant Risk       |                          |           |
| <pre>c Treatment(s):</pre>                                                                                                                                  |                                  | Responsible Person     | Due Date                 | Completed |
| ne client construction sequence proposal to assist/guide tenderers.                                                                                         |                                  | Client                 | 31/12/2015               |           |
| rdinate the program with the wetlands project to prevent reduced time available                                                                             | e to undertake the construction. | Client                 | 31/12/2015               |           |
| ely manage the program including all preparatory activities that can be underta agement.                                                                    | ken prior to contractor          | Client                 | 31/12/2015               |           |
| iew opportunities for pre-site activities and include a requirement for tenderers hodology response in the tender.                                          | to address this in their         | Client                 | 31/12/2015               |           |
| nt to investigate ECI style of contract to achieve contractor input into constructi                                                                         | ion solution.                    | Client                 | 31/12/2015               |           |

|                                                                                                                                                                                   | Initial<br>Risk Rating   | Current<br>Risk Rating  |                          |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|--------------------------|-----------|
| <sup>15</sup> there is a confined space access incident leading to serious<br>injury or death during both construction and operations phases.                                     | Significant Risk         | <u>Significant Risk</u> |                          |           |
| isk Treatment(s):                                                                                                                                                                 |                          | Responsible Person      | Due Date                 | Completed |
| lient to ensure the Contractor follows the established ACT Government WHS protocols ppropriate qualifications.                                                                    | including workers having | Client                  | 31/12/2015               |           |
| e design and construction of the value chamber to be developed and reviewed in cons<br>perator and identify it as a confined space to the operator and identify this in the O&M ( |                          | SMEC                    | 31/12/2015               |           |
| lentify the value chamber as a confined space (in the tender documents )once it is com<br>nderway.                                                                                | pleted and testing is    | Client                  | 31/12/2015               |           |
| Risk Area: <b>Demolition</b>                                                                                                                                                      |                          |                         |                          |           |
| Risk Category: D1                                                                                                                                                                 |                          |                         |                          |           |
| <sup>16</sup> complexity of permanent concrete works significantly increases<br>time on site leading to flooding and associated risks                                             | Significant Risk         | Moderate Risk           |                          |           |
| isk Treatment(s):                                                                                                                                                                 |                          | Responsible Person      | Due Date                 | Completed |
| lient to investigate ECI style of contract to achieve contractor input into construction so eview the design to investigate opportunities to optimise the construction process.   | lution.                  | Client<br>SMEC          | 31/12/2015<br>31/12/2015 |           |
| Risk Area: <b>Demolition</b>                                                                                                                                                      |                          |                         |                          |           |
| Risk Category: D1                                                                                                                                                                 |                          |                         |                          |           |
| <sup>17</sup> during a flood event equipment is not able to be moved out of<br>working area in time and serious damage to equipment occurs.                                       | Low Risk                 | Low Risk                |                          |           |
| isk Treatment(s):                                                                                                                                                                 |                          | Responsible Person      | Due Date                 | Completed |
| MEC to investigate alternatives which eliminate flow from the site.                                                                                                               |                          | SMEC                    | 31/12/2015               |           |
| ECI is not used require the tenderers should be required to submit a detailed methodo spects of methodology highly in the tender evaluation.                                      | logy and weight safety   | Client                  | 31/12/2015               |           |
| ontract requirement for evacuation plans to be provided prior to work commences.                                                                                                  |                          | Client                  | 31/12/2015               |           |
| lient to investigate ECI style of contract to achieve contractor input into construction so                                                                                       | lution.                  | Client                  | 31/12/2015               |           |

| rea and Category<br>Iisk Name                                                                                           | Initial<br>Risk Rating | Current<br>Risk Rating |            |           |
|-------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------|-----------|
| <sup>18</sup> either a construction worker or a member of the public is<br>exposed to asbestos before it is identified. | Moderate Risk          | Low Risk               |            |           |
| sk Treatment(s):                                                                                                        |                        | Responsible Person     | Due Date   | Completed |
| nduct first site sampling as soon as dam has been drained.                                                              |                        | Client                 | 31/12/2015 |           |
| dertake desktop search of historic records                                                                              |                        | Client                 | 31/12/2015 |           |
| velop unexpected finds protocol.                                                                                        |                        | Client                 | 31/12/2015 |           |
| velop sampling program for construction works to include in contractor scope of                                         | works                  | Client                 | 31/12/2015 |           |

# Project No/ Business Unit:

| Business Unit:          | Risk Identification                                                                                                                 | 1                                                                             | 1                                                        | Risk Analysis                        |            |             | Risk E | valuation | 1                                                                                                                                                                                              | Risk Treatm    | nent                |                       |                        |             |           |              |                                    | Risk Monitoring        |                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|------------|-------------|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-----------------------|------------------------|-------------|-----------|--------------|------------------------------------|------------------------|-----------------------------------------------------------------|
| Source of Risk          | Identified Risks / Hazards                                                                                                          | Leading to                                                                    | Possible Causes of                                       | Existing Controls of                 | Likelihood | Consequence |        | Risk      | Treatments / Actions                                                                                                                                                                           | Responsibility | Timing              | Residual              | Residual               | Residual    | Date      | Monitored by | Risk Mgt                           | Risk Mgt Action        |                                                                 |
|                         | (opportunities & threats)                                                                                                           |                                                                               | Identified Risk / Hazard                                 | Identified Risk / Hazard (If<br>any) | (1 - 5)    | (1 - 5)     | Rating | Priority  | redunents / Addons                                                                                                                                                                             |                | , ming              | Likelihood<br>(1 - 5) | Consequence<br>(1 - 5) | Risk Rating |           | monitored by | Action<br>implemented?<br>Yes / No | effective?<br>Yes / No |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Client to review skills and expertise<br>of certifier and include in the tender<br>documents the right to require the<br>engagement of an alternative<br>certifier.                            |                |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Construct safety barriers at the top<br>of any exposed embankments.<br>Include this requirement in the<br>tender documents.                                                                    |                |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
| Demolition              | A construction worker falls from<br>a height                                                                                        | Serious injury or death.                                                      |                                                          |                                      | 3          | 5           | 15     |           | Client to ensure the contractor<br>follows the established ACT<br>Government WHS protocols<br>including workers having working<br>from heights qualifications.                                 | PCW            | 1/06/2016           | 3                     | 5                      | 15          | 8/12/2015 | SMEC PM      | No                                 |                        | Include in register of special contract provisions              |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Identify specific high risk temporary<br>works to highlight in tender<br>documents.                                                                                                            | SMEC           |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Ensure all temporary works are designed to meet the dam regulator and highlight in tender documents.                                                                                           |                |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
| emolition/construction  | u<br>Failure of cofferdam                                                                                                           | sudden influx of water causing serious injury or death.                       | 3                                                        | Design to current standards          | 4          | 3           | 12     |           | Include independent<br>inspection/certification regime to<br>monitor quality of temporary works.                                                                                               | PCW            | 1/06/2016           | 2                     | 3                      | e           | 8/12/2015 | SMEC PM      | No                                 |                        |                                                                 |
| cuon                    | Failure of formwork during                                                                                                          | serious injury or deatri.                                                     |                                                          | Design to current standards          | 4          | 3           | 12     |           | Client to review skills and expertise<br>of certifier and include in the tender<br>documents the right to require the<br>engagement of an alternative                                          |                | 1/06/2016           | 2                     | 3                      | 0           | 8/12/2015 | SIMEC PM     | NO                                 |                        |                                                                 |
| Construction            | construction                                                                                                                        | Serious injury/death                                                          | Poor design/construction                                 | Design to current standards          | 3          | 5           | 15     |           | certifier.<br>Install signage and handrails to                                                                                                                                                 | PCW            | 1/06/2016           | 5 2                   | 5                      | 10          | 8/12/2015 | SMEC PM      | No                                 |                        |                                                                 |
| Operation               | A member of the public has an accident adjacent to the works.                                                                       | Injury/death                                                                  | Exposed high abutment walls                              |                                      | 1          | 5           | 5      |           | meet the requirements of the new<br>asset owner (TAMS) and seek sign-<br>off of the complete design by<br>TAMS.                                                                                | PCW            | 1/06/2016           | 5 1                   | 5                      | 5           | 8/12/2015 | SMEC PM      | No                                 |                        |                                                                 |
|                         | A maintenance contractor has                                                                                                        |                                                                               |                                                          |                                      |            |             |        |           | The interface design to consider<br>creating a buffer between<br>maintenance activities and<br>permanent water zones.                                                                          |                |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
| Operation               |                                                                                                                                     | Machinery entering the water.                                                 |                                                          |                                      | 1          | 4           | 4      |           | Client to ensure the contractor                                                                                                                                                                | PCW            | 1/06/2016           | 5 1                   | 4                      | 4           | 8/12/2015 | SMEC PM      | No                                 |                        |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | follows the established ACT<br>Government WHS protocols<br>including workers having<br>appropriate qualifications.                                                                             |                |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
| Demolition/construction | u An overhead power cable is struck                                                                                                 | Serious injury or death.                                                      | Tight working areas<br>adjacent to power<br>poles/cables |                                      | 3          | 5           | 15     |           | Fence off power line and require<br>access permits to enter within the<br>fenced off area. Include this<br>requirement in the tender<br>documents.                                             | PCW            | During construction | 1                     | 5                      | 5           | 8/12/2015 | SMEC PM      | No                                 |                        |                                                                 |
|                         |                                                                                                                                     | Increased length of work on                                                   |                                                          |                                      |            |             |        |           | Client to investigate ECI style of<br>contract to achieve contractor input<br>into construction solution.                                                                                      | PCW            |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
| Construction            | Complexity of anchor design<br>and construction                                                                                     | site increasing the risk of<br>flooding the worksite and<br>associated risks. | Design/detailing                                         |                                      | 4          | 3           | 12     |           | Review the design to investigate<br>opportunitiesto simplify the<br>construction process.                                                                                                      | SMEC           | 1/06/2016           | 5 4                   | 3                      | 12          | 8/12/2015 | SMEC PM      | Yes                                | Yes                    | Requirement of anchor design for the weir wall/slab v reviewed. |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Contract requirement for evacuation<br>plans to be provided prior to work<br>commencing.                                                                                                       | PCW            |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | If ECI is not used, require the<br>tenderers to submit a detailed<br>methodology and weight safety<br>aspectsof methodology higher in the<br>tender evaluation.                                | PCW            |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Consider additional protection for<br>the period whilst the new abutment<br>walls are being constructed.                                                                                       | PCW            |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Client to investigate ECI style of<br>contract to achieve contactor input<br>into the construction solution.                                                                                   | PCW            |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
| Construction            | Exposure to flash flooding<br>greater than 60cum/s before<br>the abutment walls are<br>complete                                     | Loss of construction<br>plant/Serious injury or death.                        | Inadequate warning of imminent floods                    |                                      | 1          | 5           | 5      |           | SMEC to further develop the 3D<br>construction sequence model to be<br>used to gain a better understanding<br>of the process and to be used for<br>the tender process.                         | SMEC           | 1/02/2016           | ē 1                   | 5                      | 5           | 8/12/2015 | SMEC PM      | No                                 |                        |                                                                 |
|                         |                                                                                                                                     |                                                                               |                                                          |                                      |            |             |        |           | Client to investigate ECI style of<br>contract to achieve contactor input<br>into the construction solution.                                                                                   |                |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
|                         | Items that cannot be identified<br>until the water is drained have<br>a significant impact on the<br>scope required to complete the | Compressed timeframe<br>resulting in serious injury or                        |                                                          |                                      |            |             |        |           | Develop a response action plan for<br>a range of scenarios and possible<br>solutions and include the capability<br>for those solutions to be delivered.<br>Include scenarios within the tender |                |                     |                       |                        |             |           |              |                                    |                        |                                                                 |
| Demolition              | works and extend the duration                                                                                                       |                                                                               |                                                          |                                      | 3          | 4           | 12     |           | response requirements.                                                                                                                                                                         | PCW            | 1/06/2016           | 3                     | 3                      | 9           | 8/12/2015 | SMEC PM      | No                                 | I                      | Include in register of special contract provisions              |

|                            |                                                                                                 |                                             |                     |       |   |    | <br>SMEC to investigate alternatives                                                                      |      |                     |   |   |     |           |          | 1  |  |                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|-------|---|----|-----------------------------------------------------------------------------------------------------------|------|---------------------|---|---|-----|-----------|----------|----|--|----------------------------------------------------|
|                            |                                                                                                 |                                             |                     |       |   |    | which eliminate flow from the site.<br>If ECI is not used require the                                     | SMEC |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | tenderers to submit a detailed<br>methodology and weight safety                                           |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | aspects of methodology highly in the tender evaluation.                                                   | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Contract requirement for evacuation<br>plans to be provided prior to work                                 | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            | Personnel are not able to be                                                                    |                                             |                     |       |   |    | commencing.<br>Client to investigate ECI style of                                                         | PCW  |                     |   |   |     |           |          |    |  |                                                    |
| Demolition                 | evacuated in time during a flood                                                                | Serious injury or death.                    | Flood below 60cum/s | <br>1 | 5 | 5  | contract to achieve contractor input<br>into construction solution.                                       |      | 1/02/2016           | 1 | 5 | 5   | 8/12/2015 | SMEC PM  | No |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Identify appropriate stockpile sites<br>including routes from work site to                                |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | stockpiling locations and include<br>specific requirements in tender                                      | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | documents.<br>Communicate findings or sampling                                                            | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | already undertaken and confirm it meets requirements.                                                     |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Develop a plan to prevent public<br>access to the high risk areas.                                        | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Incorporate all measures in relation<br>to handling and moving sediment to                                | SMEC |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | be included in the CEMP. A draft<br>CEMP to be developed during the                                       | SMEC |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | design phase to confirm feasibility.                                                                      | 2011 |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Conduct first site sampling as soon as dam has been drained.                                              | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            | Proximity of sediment to                                                                        | Construction workers or public              |                     |       |   | 10 | Develop a sampling program for<br>construction works to include in                                        | PCW  |                     |   |   |     |           |          |    |  |                                                    |
| Construction               | construction workers or public                                                                  | becoming sick.                              |                     | 3     | 4 | 12 | contractor scope of works.<br>Include the vibration limits within the<br>statement of requirements in the |      | During construction | 2 | 4 | 8   | 8/12/2015 | SMEC PM  | No |  |                                                    |
|                            | The demolition/excavation                                                                       |                                             |                     |       |   |    | tender documents.                                                                                         | PCW  |                     |   |   |     |           |          |    |  |                                                    |
| Demolition                 | process causes undetected<br>weakening of the existing<br>remaining structure.                  | collapse/instability                        |                     | 3     | 4 | 12 | Determine and recommend<br>vibration limits and monoitor during<br>construction.                          | SMEC |                     | 2 | 4 | 8   | 8/12/2015 | SMEC PM  | No |  | Include in register of special contract provisions |
| Bomonition                 | romanning of dotaro.                                                                            | condpoor moldomy                            |                     |       | · |    | Conduct an analysis of the                                                                                |      |                     |   |   | , j | 0/12/2010 | omeo i m |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | abutment and labrynth walls in<br>current condition and estimate<br>strength with backfill removed.       |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Determine and recommend                                                                                   | SMEC |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | vibration limits and monitor during construction.                                                         | SMEC |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Include the vibration limits within the<br>statement of requirements in the                               |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | tender documents.                                                                                         | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Detailed structural analysis of the wall as soon as the site is drained.                                  | SMEC |                     |   |   |     |           |          |    |  |                                                    |
|                            | The demolition/excavation<br>process causes weakening of                                        |                                             |                     |       |   |    | Inspection of the exposed structure<br>and foundations as soon as                                         |      |                     |   |   |     |           |          |    |  |                                                    |
| Demolition                 | the remaining structure once<br>the abutments are removed                                       | collapse during a flood.                    |                     | 2     | 5 | 10 | <br>possible to confirm design<br>assumptions.                                                            | SMEC | 1/06/2016           | 1 | 5 | 5   | 8/12/2015 | SMEC PM  | No |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Refine client construction sequence                                                                       |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | proposal to assist/guide tenderers.<br>Coordinate the program with the                                    |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | wetlands project to prevent reduced<br>time available to undertake the                                    |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | construction.<br>Closely manage the program                                                               |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | including all preparatory<br>activitiesthat can be undertaken                                             |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | prior to the contractor engagement.<br>Review opportunities for pre-site                                  |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | activities and include a requirement<br>for tenderers to address this in their                            |      |                     |   |   |     |           |          |    |  |                                                    |
|                            | The fight program will be different                                                             |                                             |                     |       |   |    | methodology response in the tender.                                                                       |      |                     |   |   |     |           |          |    |  |                                                    |
|                            | The tight program will lead to<br>increased safety risks due to<br>the requirement to work more |                                             |                     |       |   |    | Client to investigate ECI style of<br>contract to achieve contractor input                                |      |                     |   |   |     |           |          |    |  |                                                    |
| Demolition                 | quickly                                                                                         | Serious injury or death.                    |                     | 2     | 4 | 8  | into the solution.                                                                                        | PCW  | 31/12/2015          | 2 | 4 | 8   | 8/12/2015 | SMEC PM  | No |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | Client to ensure the contractor<br>follows the established ACT<br>Government WHS protocols                |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | including workers having appropriate qualifications.                                                      | PCW  |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | The design and construction of the<br>valve chamber to be developed and                                   |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | reviewed in consultation with the<br>dam operator and identify it as a                                    | SMEC |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 |                                             |                     |       |   |    | confined space to the operator and<br>identify this in the O&M Manual.                                    |      |                     |   |   |     |           |          |    |  |                                                    |
|                            |                                                                                                 | Serious injury or death during              |                     |       |   |    | Identify the valve chamber as a<br>confined space (in the tender                                          | PCW  |                     |   |   |     |           |          |    |  |                                                    |
| Construction/opera<br>tion | There is a confined space<br>access incident                                                    | both construction and<br>operations phases. |                     | 2     | 4 | 8  | documents) once it is completed<br>and testing is underway.                                               |      | 1/06/2016           | 1 | 4 | 4   | 8/12/2015 | SMEC PM  | No |  |                                                    |

| -                  |                                 | 1                              | 1 | 1 |   |   |    |   |                                                                   |      |           |   |   |   | _         |             | 1                                       |   |
|--------------------|---------------------------------|--------------------------------|---|---|---|---|----|---|-------------------------------------------------------------------|------|-----------|---|---|---|-----------|-------------|-----------------------------------------|---|
|                    |                                 |                                |   |   |   |   |    |   | Client to investigate ECI style of                                | PCW  |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | contract to achieve contactor input                               | PCW  |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | into the construction solution.                                   |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   |                                                                   |      |           |   |   |   |           |             |                                         |   |
|                    | Complexity of permanent         |                                |   |   |   |   |    |   | Review the design to investigate                                  | SMEC |           |   |   |   |           |             |                                         |   |
|                    | concrete works significantly    |                                |   |   |   |   |    |   | opportunities to optimise the                                     |      |           |   |   |   |           |             |                                         |   |
| Construction       | increases time on site          | Flooding and associated risks. |   |   | 4 | 3 | 12 |   | construction process.                                             |      | 1/02/2016 | 2 | 3 | 6 | 8/12/2015 | SMEC PM     | No                                      |   |
|                    |                                 |                                |   |   |   |   |    |   |                                                                   |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | SMEC to investigate alternatives                                  |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | which eliminate flow from the site.                               |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   |                                                                   |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | If ECI is not used require the                                    |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | tenderers to submit a detailed                                    | SMEC |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | methodology and unight opfoty                                     | SWEC |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | methodology and weight safety<br>aspects of methodology highly in |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | aspects of methodology highly in                                  |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | the tender evaluation.                                            |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   |                                                                   | PCW  |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | Contract requirement for evacuation                               |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | plans to be provided prior to work                                |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | commencing.                                                       |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | , i i i i i i i i i i i i i i i i i i i                           | PCW  |           |   |   |   |           |             | 1                                       |   |
|                    | During a flood event equipment  |                                |   |   |   |   |    |   | Client to investigate ECI style of                                |      |           |   |   |   |           |             |                                         |   |
| Demolition/Constru | is not able to be moved out of  |                                |   |   |   |   |    |   | contract to achieve contractor input                              |      |           |   |   |   |           |             |                                         |   |
| ction              | working area in time            | Serious damage to equipment    |   |   | 2 | 2 | 4  |   | into the construction solution.                                   | PCW  | 1/02/2016 | 2 | 2 | 4 | 8/12/2015 | SMEC PM     | No                                      |   |
| Clion              | working area in ume             | Serious damage to equipment    |   |   | 2 | 2 | 4  |   | into the construction solution.                                   | PCW  | 1/02/2016 | 2 | 2 | 4 | 0/12/2015 | SIVIEC PIN  | INU                                     |   |
|                    |                                 |                                |   |   |   |   |    |   | Conduct first site compliant on even                              |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | Conduct first site sampling as soon                               |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | as dam has been drained.                                          |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   |                                                                   |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | Undertake desktop msearch of                                      |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | historic records.                                                 |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   |                                                                   |      |           |   |   |   |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    |   | Develop unexpected finds protocol.                                |      |           |   |   |   |           |             |                                         |   |
|                    | Either a construction worker or |                                |   |   |   |   |    |   |                                                                   |      |           |   |   |   |           |             |                                         |   |
|                    | a member of the public is       | A member of the public or      |   |   |   |   |    |   | Develop sampling program for                                      |      |           |   |   |   |           |             |                                         |   |
|                    | exposed to asbestos before it   | construction worker becoming   |   |   |   |   |    |   | construction works to include in                                  |      |           |   |   |   |           |             |                                         |   |
| Construction       | is identified                   | sick.                          |   |   | 2 | _ |    |   | contractor scope of works.                                        | PCW  | 1/06/2016 | 2 | 2 | 4 | 9/12/2015 | SMEC PM     | No                                      |   |
| CONSTRUCTION       | is identified                   | SIGN.                          |   |   | 3 |   | 0  |   | contractor scope or works.                                        | FUW  | 1/00/2016 |   |   | 4 | 3/12/2013 | SIVIEG FIVI |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             | l – – – – – – – – – – – – – – – – – – – |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   |    | l |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             | i i                                     |   |
|                    |                                 |                                |   |   |   |   | 0  | 1 |                                                                   |      |           | 1 | 1 | Ő |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   | 1 | Ő |           |             | 1                                       |   |
|                    |                                 |                                |   |   |   |   | 0  |   | 1                                                                 |      |           |   | l | 0 |           |             | l – – – – – – – – – – – – – – – – – – – |   |
|                    |                                 |                                |   |   |   |   |    |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                |   |   |   |   | 0  |   |                                                                   |      |           |   |   | 0 |           |             |                                         |   |
|                    |                                 |                                | • |   |   |   |    |   |                                                                   |      |           |   |   |   |           |             |                                         | ÷ |

| Likelihood                              |                                     | Level of<br>Risk | Risk Priority |
|-----------------------------------------|-------------------------------------|------------------|---------------|
| 1 - Very Rare chance of occurence or    | 1 - Insignificant impact or harm    | ≥ 21 - 25        | 1             |
| 2 - Rare chance of occurence or causing | 2 - Minor impact or harm            | ≥ 17 - < 21      | 2             |
| 3 - Moderate chance of occurrence or    |                                     | ≥ 13 - < 17      |               |
| 4 - Above average chance of occurrence  | 4 - Major, but reversible impact or | ≥ 10 - < 13      | 4             |
| 5 - Almost certain chance of occurrence | 5 - Catastrophic impact or harm.    | ≥8 - < 10        | 5             |
|                                         |                                     |                  |               |
| Note: Risk level re-rated as 1          | for risks that have happened.       |                  |               |

# APPENDIX H CONTAMINATION ASSESSMENT LABORATORY RESULTS & QA/QC INFORMATION



|              | QA/QC Compliance Assessment for DQO Reporting |                         |                                 |  |  |  |  |  |  |
|--------------|-----------------------------------------------|-------------------------|---------------------------------|--|--|--|--|--|--|
| Work Order   | ES1524909                                     | Page                    | : 1 of 4                        |  |  |  |  |  |  |
| Client       | : SMEC AUSTRALIA PTY LTD                      | Laboratory              | : Environmental Division Sydney |  |  |  |  |  |  |
| Contact      | Schedule 2.2 (a)(ii)                          | Telephone               | : +61-2-8784 8555               |  |  |  |  |  |  |
| Project      | : ISABELLA                                    | Date Samples Received   | : 26-Jun-2015                   |  |  |  |  |  |  |
| Site         | :                                             | Issue Date              | : 03-Jul-2015                   |  |  |  |  |  |  |
| Sampler      | Schedule 2.2 (a)(ii)                          | No. of samples received | : 1                             |  |  |  |  |  |  |
| Order number | : 3002402                                     | No. of samples analysed | : 1                             |  |  |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## Summary of Outliers

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.



## Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                              |             |                          |                    | Evaluation | : × = Holding time | breach ; 🗸 = Withi | n holding time |  |
|-------------------------------------------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|----------------|--|
| Method                                    | Sample Date | Extraction / Preparation |                    |            |                    | Analysis           |                |  |
| Container / Client Sample ID(s)           |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation     |  |
| EA055: Moisture Content                   |             |                          |                    |            |                    |                    |                |  |
| Soil Glass Jar - Unpreserved (EA055-103)  |             |                          |                    |            |                    |                    |                |  |
| T01_180615                                | 26-Jun-2015 |                          |                    |            | 29-Jun-2015        | 10-Jul-2015        | ✓              |  |
| EG005T: Total Metals by ICP-AES           |             |                          |                    |            |                    |                    |                |  |
| Soil Glass Jar - Unpreserved (EG005T)     |             |                          |                    |            |                    |                    |                |  |
| T01_180615                                | 26-Jun-2015 | 01-Jul-2015              | 23-Dec-2015        | ~          | 02-Jul-2015        | 23-Dec-2015        | ✓              |  |
| EG035T: Total Recoverable Mercury by FIMS |             |                          |                    |            |                    |                    |                |  |
| Soil Glass Jar - Unpreserved (EG035T)     |             |                          |                    |            |                    |                    |                |  |
| T01_180615                                | 26-Jun-2015 | 01-Jul-2015              | 24-Jul-2015        | 1          | 02-Jul-2015        | 24-Jul-2015        | ✓              |  |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                     |           |    |         | Evaluation | n: 🗴 = Quality Co | ntrol frequency r | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|----------------------------------|-----------|----|---------|------------|-------------------|-------------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type      |           | Co | ount    |            | Rate (%)          |                   | Quality Control Specification                                                             |
| Analytical Methods               | Method    | 00 | Reaular | Actual     | Expected          | Evaluation        |                                                                                           |
| Laboratory Duplicates (DUP)      |           |    |         |            |                   |                   |                                                                                           |
| Moisture Content                 | EA055-103 | 2  | 20      | 10.00      | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Mercury by FIMS            | EG035T    | 2  | 20      | 10.00      | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 2  | 13      | 15.38      | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Laboratory Control Samples (LCS) |           |    |         |            |                   |                   |                                                                                           |
| Total Mercury by FIMS            | EG035T    | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 1  | 13      | 7.69       | 5.00              | 1                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Method Blanks (MB)               |           |    |         |            |                   |                   |                                                                                           |
| Total Mercury by FIMS            | EG035T    | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 1  | 13      | 7.69       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Matrix Spikes (MS)               |           |    |         |            |                   |                   |                                                                                           |
| Total Mercury by FIMS            | EG035T    | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 1  | 13      | 7.69       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods      | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content        | EA055-103 | SOIL   | In-house. A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                             |
| Total Metals by ICP-AES | EG005T    | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                         |
| Total Mercury by FIMS   | EG035T    | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an<br>appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then<br>purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This<br>method is compliant with NEPM (2013) Schedule B(3) |



# **QUALITY CONTROL REPORT**

| Work Order   | : ES1524909                          | Page                    | : 1 of 4                                              |
|--------------|--------------------------------------|-------------------------|-------------------------------------------------------|
| Client       | SMEC AUSTRALIA PTY LTD               | Laboratory              | : Environmental Division Sydney                       |
| Contact      | Schedule 2.2 (a)(ii)                 | Contact                 | :                                                     |
| Address      | : P O BOX 1654                       | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | FYSHWICK ACT, AUSTRALIA 2609         |                         |                                                       |
| E-mail       | Schedule 2.2 (a)(ii)                 | E-mail                  | :                                                     |
| Telephone    | : <mark>⊣Schedule 2.2 (a)(ii)</mark> | Telephone               | : +61-2-8784 8555                                     |
| Facsimile    | + <mark>Schedule 2.2 (a)(ii)</mark>  | Facsimile               | : +61-2-8784 8500                                     |
| Project      | : ISABELLA                           | QC Level                | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 3002402                            | Date Samples Received   | : 26-Jun-2015                                         |
| C-O-C number | : 0129                               | Date Analysis Commenced | : 29-Jun-2015                                         |
| Sampler      | Schedule 2.2 (a)(ii)                 | Issue Date              | : 03-Jul-2015                                         |
| Site         | :                                    | No. of samples received | : 1                                                   |
| Quote number | :                                    | No. of samples analysed | :1                                                    |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



#### Signatories NATA Accredited This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir Laboratory 825 compliance with procedures specified in 21 CFR Part 11.

| Accredited for                    | Signatories          | Position              | Accreditation Category |
|-----------------------------------|----------------------|-----------------------|------------------------|
| compliance with<br>ISO/IEC 17025. | Schedule 2.2 (a)(ii) | Senior Spectroscopist | Sydney Inorganics      |

|            | 1263 |                          |
|------------|------|--------------------------|
| Page       |      | : 2 of 4                 |
| Work Order |      | : ES1524909              |
| Client     |      | : SMEC AUSTRALIA PTY LTD |
| Project    |      | : ISABELLA               |



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC



## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: SOIL     |                         |                                             |            |     |       | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|---------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                            | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ontent (QC Lot: 139536) |                                             |            |     |       |                 |                        |         |                     |
| ES1524899-002        | Anonymous               | EA055-103: Moisture Content (dried @ 103°C) |            | 1   | %     | 51.5            | 46.3                   | 10.6    | 0% - 20%            |
| ES1524910-003        | Anonymous               | EA055-103: Moisture Content (dried @ 103°C) |            | 1   | %     | 84.4            | 84.7                   | 0.274   | 0% - 20%            |
| EG005T: Total Meta   | Is by ICP-AES (QC Lot   | : 142009)                                   |            |     |       |                 |                        |         |                     |
| ES1524836-004        | Anonymous               | EG005T: Cadmium                             | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
|                      |                         | EG005T: Chromium                            | 7440-47-3  | 2   | mg/kg | 10              | 9                      | 0.00    | No Limit            |
|                      |                         | EG005T: Nickel                              | 7440-02-0  | 2   | mg/kg | 9               | 8                      | 18.0    | No Limit            |
|                      |                         | EG005T: Arsenic                             | 7440-38-2  | 5   | mg/kg | <5              | <5                     | 0.00    | No Limit            |
|                      |                         | EG005T: Copper                              | 7440-50-8  | 5   | mg/kg | 6               | 6                      | 0.00    | No Limit            |
|                      |                         | EG005T: Lead                                | 7439-92-1  | 5   | mg/kg | 8               | 8                      | 0.00    | No Limit            |
|                      |                         | EG005T: Zinc                                | 7440-66-6  | 5   | mg/kg | 17              | 17                     | 0.00    | No Limit            |
| ES1524929-002        | Anonymous               | EG005T: Cadmium                             | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
|                      |                         | EG005T: Chromium                            | 7440-47-3  | 2   | mg/kg | 7               | 8                      | 12.8    | No Limit            |
|                      |                         | EG005T: Nickel                              | 7440-02-0  | 2   | mg/kg | 27              | 36                     | 27.6    | 0% - 50%            |
|                      |                         | EG005T: Arsenic                             | 7440-38-2  | 5   | mg/kg | 6               | 6                      | 0.00    | No Limit            |
|                      |                         | EG005T: Copper                              | 7440-50-8  | 5   | mg/kg | 41              | 52                     | 23.9    | 0% - 50%            |
|                      |                         | EG005T: Lead                                | 7439-92-1  | 5   | mg/kg | 12              | 11                     | 9.31    | No Limit            |
|                      |                         | EG005T: Zinc                                | 7440-66-6  | 5   | mg/kg | 31              | 34                     | 9.44    | No Limit            |
| G035T: Total Rec     | overable Mercury by Fli | MS (QC Lot: 142008)                         |            |     |       |                 |                        |         |                     |
| ES1524815-001        | Anonymous               | EG035T: Mercury                             | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1524826-002        | Anonymous               | EG035T: Mercury                             | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.00    | No Limit            |



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                             | Method Blank (MB) | Laboratory Control Spike (LCS) Report |       |        |               |                    |          |            |
|----------------------------------------------|-------------------|---------------------------------------|-------|--------|---------------|--------------------|----------|------------|
|                                              |                   |                                       |       | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                             | CAS Number        | LOR                                   | Unit  | Result | Concentration | LCS                | Low      | High       |
| EG005T: Total Metals by ICP-AES (QCLot: 1420 | 09)               |                                       |       |        |               |                    |          |            |
| EG005T: Arsenic                              | 7440-38-2         | 5                                     | mg/kg | <5     | 21.7 mg/kg    | 114                | 92       | 130        |
| EG005T: Cadmium                              | 7440-43-9         | 1                                     | mg/kg | <1     | 4.64 mg/kg    | 98.4               | 87       | 121        |
| EG005T: Chromium                             | 7440-47-3         | 2                                     | mg/kg | <2     | 43.9 mg/kg    | 95.7               | 80       | 136        |
| EG005T: Copper                               | 7440-50-8         | 5                                     | mg/kg | <5     | 32 mg/kg      | 97.0               | 93       | 127        |
| EG005T: Lead                                 | 7439-92-1         | 5                                     | mg/kg | <5     | 40 mg/kg      | 97.6               | 86       | 124        |
| EG005T: Nickel                               | 7440-02-0         | 2                                     | mg/kg | <2     | 55 mg/kg      | 102                | 93       | 131        |
| EG005T: Zinc                                 | 7440-66-6         | 5                                     | mg/kg | <5     | 60.8 mg/kg    | 103                | 81       | 133        |
| EG035T: Total Recoverable Mercury by FIMS (  | QCLot: 142008)    |                                       |       |        |               |                    |          |            |
| EG035T: Mercury                              | 7439-97-6         | 0.1                                   | mg/kg | <0.1   | 2.57 mg/kg    | 82.9               | 70       | 105        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

|                     |                                           |                  |            | M             | atrix Spike (MS) Report |            |           |
|---------------------|-------------------------------------------|------------------|------------|---------------|-------------------------|------------|-----------|
| Sub-Matrix: SOIL    |                                           |                  |            |               |                         |            |           |
|                     |                                           |                  |            | Spike         | SpikeRecovery(%)        | Recovery I | imits (%) |
| aboratory sample ID | Client sample ID                          | Method: Compound | CAS Number | Concentration | MS                      | Low        | High      |
| EG005T: Total Meta  | als by ICP-AES (QCLot: 142009)            |                  |            |               |                         |            |           |
| ES1524836-005       | Anonymous                                 | EG005T: Arsenic  | 7440-38-2  | 50 mg/kg      | 115                     | 70         | 130       |
|                     |                                           | EG005T: Cadmium  | 7440-43-9  | 50 mg/kg      | 106                     | 70         | 130       |
|                     |                                           | EG005T: Chromium | 7440-47-3  | 50 mg/kg      | 103                     | 70         | 130       |
|                     |                                           | EG005T: Copper   | 7440-50-8  | 250 mg/kg     | 104                     | 70         | 130       |
|                     |                                           | EG005T: Lead     | 7439-92-1  | 250 mg/kg     | 105                     | 70         | 130       |
|                     |                                           | EG005T: Nickel   | 7440-02-0  | 50 mg/kg      | 103                     | 70         | 130       |
|                     |                                           | EG005T: Zinc     | 7440-66-6  | 250 mg/kg     | 106                     | 70         | 130       |
| G035T: Total Red    | coverable Mercury by FIMS (QCLot: 142008) |                  |            |               |                         |            |           |
| ES1524815-001       | Anonymous                                 | EG035T: Mercury  | 7439-97-6  | 5 mg/kg       | 93.9                    | 70         | 130       |



|              | CERT                         | <b>IFICATE OF ANALYSIS</b> |                                                       |
|--------------|------------------------------|----------------------------|-------------------------------------------------------|
| Work Order   | ES1524909                    | Page                       | : 1 of 2                                              |
| Client       | : SMEC AUSTRALIA PTY LTD     | Laboratory                 | Environmental Division Sydney                         |
| Contact      | Schedule 2.2 (a)(ii)         | Contact                    |                                                       |
| Address      | : P O BOX 1654               | Address                    | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | FYSHWICK ACT, AUSTRALIA 2609 |                            |                                                       |
| E-mail       | : Schedule 2.2 (a)(ii)       | E-mail                     | :                                                     |
| Telephone    | Schedule 2.2 (a)(ii)         | Telephone                  | : +61-2-8784 8555                                     |
| Facsimile    | Schedule 2.2 (a)(ii)         | Facsimile                  | : +61-2-8784 8500                                     |
| Project      | SABELLA                      | QC Level                   | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 3002402                    | Date Samples Received      | : 26-Jun-2015 14:10                                   |
| C-O-C number | : 0129                       | Date Analysis Commenced    | : 29-Jun-2015                                         |
| Sampler      | : Schedule 2.2 (a)(ii)       | Issue Date                 | : 03-Jul-2015 10:25                                   |
| Site         | :                            |                            |                                                       |
|              |                              | No. of samples received    | :1                                                    |
| Quote number | :                            | No. of samples analysed    | : 1                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

|                  | NATA Accredited Laboratory 825                   |                                                  |                                                   | signatories indicated below. Electronic signing has | been |
|------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------|
| NATA             | Accredited for compliance with<br>ISO/IEC 17025. | carried out in compliance with pr<br>Signatories | ocedures specified in 21 CFR Part 11.<br>Position | Accreditation Category                              |      |
|                  |                                                  | Schedule 2.2 (a)(ii)                             | Senior Spectroscopist                             | Sydney Inorganics                                   |      |
| WORLD RECOGNISED |                                                  |                                                  |                                                   |                                                     |      |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

### **Analytical Results**

| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |            | Clie        | ent sample ID  | T01_180615    |        |        |        |        |
|--------------------------------------|------------|-------------|----------------|---------------|--------|--------|--------|--------|
|                                      | Cli        | ient sampli | ng date / time | [26-Jun-2015] |        |        |        |        |
| Compound                             | CAS Number | LOR         | Unit           | ES1524909-001 |        |        |        |        |
|                                      |            |             |                | Result        | Result | Result | Result | Result |
| EA055: Moisture Content              |            |             |                |               |        |        |        |        |
| ^ Moisture Content (dried @ 103°C)   |            | 1           | %              | 6.7           |        |        |        |        |
| EG005T: Total Metals by ICP-AES      |            |             |                |               |        |        |        |        |
| Arsenic                              | 7440-38-2  | 5           | mg/kg          | <5            |        |        |        |        |
| Cadmium                              | 7440-43-9  | 1           | mg/kg          | <1            |        |        |        |        |
| Chromium                             | 7440-47-3  | 2           | mg/kg          | 7             |        |        |        |        |
| Copper                               | 7440-50-8  | 5           | mg/kg          | <5            |        |        |        |        |
| Lead                                 | 7439-92-1  | 5           | mg/kg          | 12            |        |        |        |        |
| Nickel                               | 7440-02-0  | 2           | mg/kg          | 5             |        |        |        |        |
| Zinc                                 | 7440-66-6  | 5           | mg/kg          | 24            |        |        |        |        |
| EG035T: Total Recoverable Mercury by | y FIMS     |             |                |               |        |        |        |        |
| Mercury                              | 7439-97-6  | 0.1         | mg/kg          | <0.1          |        |        |        |        |



# STATEMENT OF QA/QC PERFORMANCE

| CLIENT DETAILS |                                                                              | LABORATORY DETAI | LS                                           |
|----------------|------------------------------------------------------------------------------|------------------|----------------------------------------------|
| Contact        | Schedule 2.2 (a)((                                                           | Manager          | Schedule 2.2 (a)(ii)                         |
| Client         | SMEC Australia Pty Ltd - ACT                                                 | Laboratory       | SGS Alexandria Environmental                 |
| Address        | Sun Micro Building<br>Suite 2, Level 1<br>243 Northbourne Avenue<br>ACT 2602 | Address          | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone      | Schedule 2.2 (a)(ii)                                                         | Telephone        | Schedule 2.2 (a)(ii)                         |
| Facsimile      | Schedule 2.2 (a)(ii)                                                         | Facsimile        | Schedule 2.2 (a)(ii)                         |
| Email          | Schedule 2.2 (a)(ii)                                                         | Email            | au.environmental.sydney@sgs.com              |
| Project        | Isabella                                                                     | SGS Reference    | SE140881 R0                                  |
| Order Number   | 0127-0128                                                                    | Report Number    | 0000114603                                   |
| Samples        | 7                                                                            | Date Reported    | 03 Jul 2015                                  |

COMMENTS .

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

#### All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

1 item

| SAMPLE S | SUMMARY | - |
|----------|---------|---|
|----------|---------|---|

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 7 Soils 29/6/15@8.57am Yes Other Lab Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Number of eskies/boxes received COC Yes 5.3°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 A

5 Australia 5 Australia t +61 2 8594 0400 f +61

f +61 2 8594 0499

www.au.sgs.com



# HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

| TPA1_0.5         SE140881.001         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA1_1.0         SE140881.002         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA2_0.2         SE140881.003         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA2_0.2         SE140881.004         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA2_1.0         SE140881.004         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_0.5         SE140881.005         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_1.0         SE140881.006         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           Mercury in Soil         Sample No.         QC Ref         Sampled         Received         Extraction Due         Extracted         Analysis Due           TPA1_0.5         SE140881.001         L                                                                                                                                                                                            | Analysed           03 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015           01 Jul 2015 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TPA1_1.0         SE140881.002         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA2_0.2         SE140881.003         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA2_0.2         SE140881.004         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA2_1.0         SE140881.004         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_0.5         SE140881.005         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_1.0         SE140881.006         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           Mercury in Soll         Method: ME-(A         Method: ME-(A         Method: ME-(A         Method: ME-(A           TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TPA1_0.5         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015 <td>03 Jul 2015<br/>03 Jul 2015<br/>03 Jul 2015<br/>03 Jul 2015<br/>03 Jul 2015<br/>03 Jul 2015<br/>04 Jul 2015<br/>01 Jul 2015<br/>01 Jul 2015<br/>01 Jul 2015<br/>01 Jul 2015</td> | 03 Jul 2015<br>03 Jul 2015<br>03 Jul 2015<br>03 Jul 2015<br>03 Jul 2015<br>03 Jul 2015<br>04 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                      |
| TPA2_0.2         SE 140881.003         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TPA2_1.0         SE 140881.004         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_0.5         SE 140881.005         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_1.0         SE 140881.006         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           Mercury in Soll         Semple No.         QC Ref         Sampled         Received         Extraction Due         Extracted         Analysis Due           TPA1_0.5         SE 140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_0.5         SE 140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_0.0         SE 140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         16 Jul 2015           TPA2_0.2         SE 140881.004         LB080079                                                                                                                                                                                                 | 03 Jul 2015<br>03 Jul 2015<br>03 Jul 2015<br>03 Jul 2015<br>04 Jul 2015<br>05 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                      |
| TPA2_1.0         SE140881.004         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_0.5         SE140881.005         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_0.5         SE140881.006         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           Mercury in Soll         Sample Name         Sample No.         QC Ref         Sampled         Received         Extraction Due         Extracted         Analysis Due           TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_0.0         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TPA2_1.0         SE                                                                                                                                                                                            | 03 Jul 2015<br>03 Jul 2015<br>03 Jul 2015<br><b>AU)-[ENV]AN312</b><br><b>Analysed</b><br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                       |
| TP3A_0.5         SE140881.005         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           TP3A_1.0         SE140881.006         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           Mercury in Soll         Sample Name         QC Ref         Sampled         Received         Extraction Due         Extracted         Analysis Due           TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_1.0         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TPA3_0.5         SE140881.005                                                                                                                                                                                                     | 03 Jul 2015<br>03 Jul 2015<br>AU)-[ENV]AN312<br>Analysed<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                                                    |
| TP3A_1.0         SE140881.006         LB080018         18 Jun 2015         26 Jun 2015         17 Jun 2016         30 Jun 2015         17 Jun 2016           Mercury in Soll         Method: ME-(A           Sample Name         Sample No.         QC Ref         Sampled         Received         Extraction Due         Extracted         Analysis Due           TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_1.0         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TP3A_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015 <td>03 Jul 2015<br/>AU)-[ENV]AN312<br/>Analysed<br/>01 Jul 2015<br/>01 Jul 2015<br/>01 Jul 2015<br/>01 Jul 2015</td>                                                                             | 03 Jul 2015<br>AU)-[ENV]AN312<br>Analysed<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                  |
| Mercury in Soll         Method: ME-(A           Sample Name         Sample No.         QC Ref         Sampled         Received         Extraction Due         Extracted         Analysis Due           TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_1.0         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015           TP3A_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         11 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                               | AU)-[ENV]AN312<br>Analysed<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample Name         Sample No.         QC Ref         Sampled         Received         Extraction Due         Extracted         Analysis Due           TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA1_1.0         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         16 Jul 2015           TP3A_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysed           01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                 |
| TPA1_0.5         SE140881.001         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         18 Jul 2015           TPA1_1.0         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA3_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TPA1_1.0         SE140881.002         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TP3A_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 Jul 2015<br>01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TPA2_0.2         SE140881.003         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TP3A_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 Jul 2015<br>01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TPA2_1.0         SE140881.004         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015           TP3A_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TP3A_0.5         SE140881.005         LB080079         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TP3A 1.0 SE140881.006 LB080079 18 Jun 2015 26 Jun 2015 16 Jul 2015 01 Jul 2015 16 Jul 2015 16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D01_180615         SE140881.007         LB080107         18 Jun 2015         26 Jun 2015         16 Jul 2015         01 Jul 2015         16 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Moisture Content Method: ME-(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AU)-[ENV]AN002                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TPA1_0.5         SE140881.001         LB079946         18 Jun 2015         26 Jun 2015         02 Jul 2015         29 Jun 2015         04 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TPA1_1.0         SE140881.002         LB079946         18 Jun 2015         26 Jun 2015         02 Jul 2015         29 Jun 2015         04 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TPA2_0.2         SE140881.003         LB079946         18 Jun 2015         26 Jun 2015         02 Jul 2015         29 Jun 2015         04 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TPA2_1.0         SE140881.004         LB079946         18 Jun 2015         26 Jun 2015         02 Jul 2015         29 Jun 2015         04 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TP3A_0.5         SE140881.005         LB079946         18 Jun 2015         26 Jun 2015         02 Jul 2015         29 Jun 2015         04 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TP3A_1.0         SE140881.006         LB079946         18 Jun 2015         26 Jun 2015         02 Jul 2015         29 Jun 2015         04 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D01_180615         SE140881.007         LB079946         18 Jun 2015         26 Jun 2015         02 Jul 2015         29 Jun 2015         04 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IV]AN040/AN320                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TPA1_0.5         SE140881.001         LB080140         18 Jun 2015         26 Jun 2015         15 Dec 2015         02 Jul 2015         15 Dec 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TPA1_1.0         SE140881.002         LB080140         18 Jun 2015         26 Jun 2015         15 Dec 2015         02 Jul 2015         15 Dec 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TPA2_0.2         SE140881.003         LB080140         18 Jun 2015         26 Jun 2015         15 Dec 2015         02 Jul 2015         15 Dec 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TPA2_1.0         SE140881.004         LB080140         18 Jun 2015         26 Jun 2015         15 Dec 2015         02 Jul 2015         15 Dec 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TP3A_0.5         SE140881.005         LB080140         18 Jun 2015         26 Jun 2015         15 Dec 2015         02 Jul 2015         15 Dec 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TP3A_1.0         SE140881.006         LB080140         18 Jun 2015         26 Jun 2015         15 Dec 2015         02 Jul 2015         15 Dec 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D01_180615         SE140881.007         LB080140         18 Jun 2015         26 Jun 2015         15 Dec 2015         02 Jul 2015         15 Dec 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 Jul 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



## **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.



# **METHOD BLANKS**

## SE140881 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Mercury in Soil

#### Method: ME-(AU)-[ENV]AN312

| Sample Number | Parameter | Units | LOR  | Result |
|---------------|-----------|-------|------|--------|
| LB080079.001  | Mercury   | mg/kg | 0.01 | <0.01  |
| LB080107.001  | Mercury   | mg/kg | 0.01 | <0.01  |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

| Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest |              | Method: ME-(AU)-[ENV]AN040/AN320 |     |        |
|------------------------------------------------------------------|--------------|----------------------------------|-----|--------|
| Sample Number                                                    | Parameter    | Units                            | LOR | Result |
| LB080140.001                                                     | Arsenic, As  | mg/kg                            | 1   | <1     |
|                                                                  | Cadmium, Cd  | mg/kg                            | 0.3 | <0.3   |
|                                                                  | Chromium, Cr | mg/kg                            | 0.5 | <0.5   |
|                                                                  | Copper, Cu   | mg/kg                            | 0.5 | <0.5   |
|                                                                  | Lead, Pb     | mg/kg                            | 1   | <1     |
|                                                                  | Nickel, Ni   | mg/kg                            | 0.5 | <0.5   |
|                                                                  | Zinc, Zn     | mg/kg                            | 2   | <2     |



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Mercury in Soil

| Mercury in Soil Method: ME-(AU)-[ENV]AN3 |                                         |            |       |      |             |              | ENVJAN312  |           |
|------------------------------------------|-----------------------------------------|------------|-------|------|-------------|--------------|------------|-----------|
| Original                                 | Duplicate                               | Parameter  | Units | LOR  | Original    | Duplicate    | Criteria % | RPD %     |
| SE140858.058                             | LB080107.014                            | Mercury    | mg/kg | 0.01 | 0.072052647 | 0.0707261420 | ) 100      | 2         |
| SE140881.003                             | LB080079.014                            | Mercury    | mg/kg | 0.01 | 0.02        | 0.02         | 200        | 0         |
| SE140881.007                             | LB080107.021                            | Mercury    | mg/kg | 0.01 | <0.01       | <0.01        | 200        | 0         |
| SE140917.002                             | LB080079.024                            | Mercury    | mg/kg | 0.01 | 0.02        | 0.01         | 200        | 0         |
| Moisture Content                         | isture Content Method: ME-(AU)-[ENV]AN0 |            |       |      |             |              |            | ENVJAN002 |
| Original                                 | Duplicate                               | Parameter  | Units | LOR  | Original    | Duplicate    | Criteria % | RPD %     |
| SE140881.003                             | LB079946.011                            | % Moisture | %w/w  | 1    | 14.9        | 16.0         | 36         | 7         |
| SE140881.007                             | LB079946.016                            | % Moisture | %     | 1    | 9.9         | 8.3          | 41         | 17        |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

| Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest |              |              |       | Method: ME-(AU)-[ENV]AN040/AN32 |              |                |            |       |
|------------------------------------------------------------------|--------------|--------------|-------|---------------------------------|--------------|----------------|------------|-------|
| Original                                                         | Duplicate    | Parameter    | Units | LOR                             | Original     | Duplicate      | Criteria % | RPD % |
| SE140881.006                                                     | LB080140.014 | Arsenic, As  | mg/kg | 1                               | 2            | 2              | 81         | 0     |
|                                                                  |              | Cadmium, Cd  | mg/kg | 0.3                             | <0.3         | <0.3           | 200        | 0     |
|                                                                  |              | Chromium, Cr | mg/kg | 0.5                             | 5.6          | 6.0            | 39         | 8     |
|                                                                  |              | Copper, Cu   | mg/kg | 0.5                             | 3.1          | 3.1            | 46         | 1     |
|                                                                  |              | Lead, Pb     | mg/kg | 1                               | 9            | 9              | 41         | 2     |
|                                                                  |              | Nickel, Ni   | mg/kg | 0.5                             | 3.2          | 3.2            | 46         | 1     |
|                                                                  |              | Zinc, Zn     | mg/kg | 2                               | 14           | 14             | 45         | 2     |
| SE140965.001                                                     | LB080140.024 | Arsenic, As  | mg/kg | 1                               | 11.416540284 | 32.5243396737  | 38         | 9     |
|                                                                  |              | Cadmium, Cd  | mg/kg | 0.3                             | 0.3028902737 | 70.3130451328  | 127        | 3     |
|                                                                  |              | Chromium, Cr | mg/kg | 0.5                             | 18.568012266 | 96.0438015070  | 33         | 15    |
|                                                                  |              | Copper, Cu   | mg/kg | 0.5                             | 17.687791739 | 20.0161505962  | 33         | 12    |
|                                                                  |              | Lead, Pb     | mg/kg | 1                               | 70.212971678 | 792.3692158450 | 31         | 27    |
|                                                                  |              | Nickel, Ni   | mg/kg | 0.5                             | 7.9715292969 | 7.5362848380   | 36         | 6     |
|                                                                  |              | Zinc, Zn     | mg/kg | 2                               | 75.543206677 | 794.0805895539 | 32         | 22    |



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Method: ME-(AU)-[ENV]AN312

| Mercury in Soli Method: ME-(AU)-[El |        |           |       |      |        | U)-[ENV]AN312 |            |            |
|-------------------------------------|--------|-----------|-------|------|--------|---------------|------------|------------|
| Sample                              | Number | Parameter | Units | LOR  | Result | Expected      | Criteria % | Recovery % |
| LB080079                            | .002   | Mercury   | mg/kg | 0.01 | 0.23   | 0.2           | 70 - 130   | 114        |
| LB080107                            | .002   | Mercury   | mg/kg | 0.01 | 0.20   | 0.2           | 70 - 130   | 100        |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

| Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[E |              |       |     |        |          | ME-(AU)-[ENV | /JAN040/AN320 |
|-------------------------------------------------------------------------------------|--------------|-------|-----|--------|----------|--------------|---------------|
| Sample Number                                                                       | Parameter    | Units | LOR | Result | Expected | Criteria %   | Recovery %    |
| LB080140.002                                                                        | Arsenic, As  | mg/kg | 1   | 46     | 50       | 80 - 120     | 91            |
|                                                                                     | Cadmium, Cd  | mg/kg | 0.3 | 47     | 50       | 80 - 120     | 94            |
|                                                                                     | Chromium, Cr | mg/kg | 0.5 | 47     | 50       | 80 - 120     | 93            |
|                                                                                     | Copper, Cu   | mg/kg | 0.5 | 48     | 50       | 80 - 120     | 96            |
|                                                                                     | Lead, Pb     | mg/kg | 1   | 46     | 50       | 80 - 120     | 92            |
|                                                                                     | Nickel, Ni   | mg/kg | 0.5 | 47     | 50       | 80 - 120     | 93            |
|                                                                                     | Zinc, Zn     | mg/kg | 2   | 47     | 50       | 80 - 120     | 93            |



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| Mercury in Soll Method: ME-(AU)-[E |               |           |       |      |        |               | J)-[ENV]AN312 |           |
|------------------------------------|---------------|-----------|-------|------|--------|---------------|---------------|-----------|
| QC Sample                          | Sample Number | Parameter | Units | LOR  | Result | Original      | Spike         | Recovery% |
| SE140854.001                       | LB080107.004  | Mercury   | mg/kg | 0.01 | 0.22   | 0.04472482598 | 0.2           | 85        |
| SE140865.001                       | LB080079.004  | Mercury   | mg/kg | 0.01 | 0.21   | 0.00579042275 | 0.2           | 104       |

| Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[ENV]AN |               |           |       |     |        |          | JAN040/AN320 |           |
|------------------------------------------------------------------------------------------|---------------|-----------|-------|-----|--------|----------|--------------|-----------|
| QC Sample                                                                                | Sample Number | Parameter | Units | LOR | Result | Original | Spike        | Recovery% |
| SE140867.012                                                                             | LB080140.004  | Lead, Pb  | mg/kg | 1   | 41     | 12       | 50           | 59 ④      |



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- \* Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- IOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

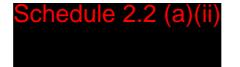


# **ANALYTICAL REPORT**



| ntact        | Schedule 2.2 (a)(I)                                                          | Manager       | Schedule 2.2 (a)(ii)                         |
|--------------|------------------------------------------------------------------------------|---------------|----------------------------------------------|
| ent          | SMEC Australia Pty Ltd - ACT                                                 | Laboratory    | SGS Alexandria Environmental                 |
| dress        | Sun Micro Building<br>Suite 2, Level 1<br>243 Northbourne Avenue<br>ACT 2602 | Address       | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| lephone      | Schedule 2.2 (a)(ii)                                                         | Telephone     | Schedule 2.2 (a)(ii)                         |
| acsimile     | Schedule 2.2 (a)(ii)                                                         | Facsimile     | Schedule 2.2 (a)(ii)                         |
| mail         | Schedule 2.2 (a)(ii)                                                         | Email         | au.environmental.sydney@sgs.com              |
| Project      | Isabella                                                                     | SGS Reference | SE140881 R0                                  |
| Order Number | 0127-0128                                                                    | Report Number | 0000114602                                   |
| Samples      | 6                                                                            | Date Reported | 03 Jul 2015                                  |
| Jampieo      | -                                                                            | Date Received | 26 Jun 2015                                  |

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).


No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier

SIGNATORIES -



Production Manager



# Senior Chemist



chedule 2.2 (a)(ii) Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400 Australia

f +61 2 8594 0499

www.au.sgs.com



# ANALYTICAL REPORT

| Fibre Identificati      | ion in soil         |        |                             |                  | Method AN6           | 602       |
|-------------------------|---------------------|--------|-----------------------------|------------------|----------------------|-----------|
| Laboratory<br>Reference | Client<br>Reference | Matrix | Sample<br>Description       | Date Sampled     | Fibre Identification | Est.%w/w* |
| SE140881.001            | TPA1_0.5            | Soil   | 534g<br>Clay,Sand,Rock<br>s | 18 Jun 2015      | No Asbestos Found    | <0.01     |
| SE140881.002            | TPA1_1.0            | Soil   | 535g<br>Clay,Sand,Rock<br>s | 18 Jun 2015<br>( | No Asbestos Found    | <0.01     |
| SE140881.003            | TPA2_0.2            | Soil   | 430g<br>Clay,Sand,Rock<br>s | 18 Jun 2015<br>K | No Asbestos Found    | <0.01     |
| SE140881.004            | TPA2_1.0            | Soil   | 606g<br>Clay,Sand,Rocl<br>s | 18 Jun 2015<br>( | No Asbestos Found    | <0.01     |
| SE140881.005            | TP3A_0.5            | Soil   | 477g<br>Clay,Sand,Rocł<br>s | 18 Jun 2015<br>( | No Asbestos Found    | <0.01     |
| SE140881.006            | TP3A_1.0            | Soil   | 515g<br>Clay,Sand,Rocł<br>s | 18 Jun 2015<br>( | No Asbestos Found    | <0.01     |



# METHOD SUMMARY

| METHOD | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METHOD | WETHODOLOGT SUMWART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AN602  | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned. |
|        | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."                                                                                                                                                                                                                                                                                                 |
|        | The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | <ul> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>                                                                                                                                                                                            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

FOOTNOTES

| Amosite     | - | Brown Asbestos             | NA  | - | Not Analysed                                        |
|-------------|---|----------------------------|-----|---|-----------------------------------------------------|
| Chrysotile  | - | White Asbestos             | LNR | - | Listed, Not Required                                |
| Crocidolite | - | Blue Asbestos              | *   | - | Not Accredited                                      |
| Amphiboles  | - | Amosite and/or Crocidolite | **  | - | Indicative data, theoretical holding time exceeded. |

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

#### Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarized light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarized light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarized light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.



# **ANALYTICAL REPORT**



| - CLIENT DETAILS |                                                                              | LABORATORY DE | TAILS                                        |
|------------------|------------------------------------------------------------------------------|---------------|----------------------------------------------|
| Contact          | Schedule 2.2 (a)(I                                                           | Manager       | Schedule 2.2 (a)(ii)                         |
| Client           | SMEC Australia Pty Ltd - ACT                                                 | Laboratory    | SGS Alexandria Environmental                 |
| Address          | Sun Micro Building<br>Suite 2, Level 1<br>243 Northbourne Avenue<br>ACT 2602 | Address       | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone        | Schedule 2.2 (a)(ii)                                                         | Telephone     | Schedule 2.2 (a)(ii)                         |
| Facsimile        | Schedule 2.2 (a)(ii)                                                         | Facsimile     | Schedule 2.2 (a)(ii)                         |
| Email            | Schedule 2.2 (a)(ii)                                                         | Email         | au.environmental.sydney@sgs.com              |
| Project          | Isabella                                                                     | SGS Reference | SE140881 R0                                  |
| Order Number     | 0127-0128                                                                    | Report Number | 0000114601                                   |
| Samples          | 7                                                                            | Date Reported | 3/7/2015                                     |
| Date Received    | 26/6/2015                                                                    | Date Started  | 30/6/2015                                    |

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier

SIGNATORIES



Production Manager



Senior Chemist



#### Schedule 2.2 (a)(ii)

Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t -Australia

t +61 2 8594 0400 f +6

f +61 2 8594 0499

www.au.sgs.com



# SE140881 R0

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest [AN040/AN320] Tested: 2/7/2015

|              |       |     | TPA1_0.5     | TPA1_1.0     | TPA2_0.2     | TPA2_1.0     | TP3A_0.5     |
|--------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|              |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|              |       |     |              |              |              |              |              |
|              |       |     | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    |
| PARAMETER    | UOM   | LOR | SE140881.001 | SE140881.002 | SE140881.003 | SE140881.004 | SE140881.005 |
| Arsenic, As  | mg/kg | 1   | 2            | 2            | 2            | 2            | 2            |
| Cadmium, Cd  | mg/kg | 0.3 | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         |
| Chromium, Cr | mg/kg | 0.5 | 5.9          | 5.9          | 15           | 3.2          | 5.6          |
| Copper, Cu   | mg/kg | 0.5 | 3.5          | 3.8          | 4.7          | 2.1          | 4.2          |
| Lead, Pb     | mg/kg | 1   | 10           | 10           | 17           | 8            | 12           |
| Nickel, Ni   | mg/kg | 0.5 | 2.7          | 4.0          | 3.3          | 2.6          | 3.2          |
| Zinc, Zn     | mg/kg | 2   | 16           | 16           | 12           | 17           | 13           |

|              |       |     | TP3A_1.0               | D01_180615             |
|--------------|-------|-----|------------------------|------------------------|
|              |       |     | SOIL<br>-<br>18/6/2015 | SOIL<br>-<br>18/6/2015 |
| PARAMETER    | UOM   | LOR | SE140881.006           | SE140881.007           |
| Arsenic, As  | mg/kg | 1   | 2                      | 2                      |
| Cadmium, Cd  | mg/kg | 0.3 | <0.3                   | <0.3                   |
| Chromium, Cr | mg/kg | 0.5 | 5.6                    | 5.6                    |
| Copper, Cu   | mg/kg | 0.5 | 3.1                    | 3.5                    |
| Lead, Pb     | mg/kg | 1   | 9                      | 8                      |
| Nickel, Ni   | mg/kg | 0.5 | 3.2                    | 3.1                    |
| Zinc, Zn     | mg/kg | 2   | 14                     | 14                     |



# SE140881 R0

#### Mercury in Soil [AN312] Tested: 1/7/2015

|           |       |      | TPA1_0.5     | TPA1_1.0     | TPA2_0.2     | TPA2_1.0     | TP3A_0.5     |
|-----------|-------|------|--------------|--------------|--------------|--------------|--------------|
|           |       |      | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |       |      |              |              |              |              |              |
|           |       |      | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    |
| PARAMETER | UOM   | LOR  | SE140881.001 | SE140881.002 | SE140881.003 | SE140881.004 | SE140881.005 |
| Mercury   | mg/kg | 0.01 | <0.01        | <0.01        | 0.02         | <0.01        | <0.01        |

|           |       |      | TP3A_1.0       | D01_180615     |
|-----------|-------|------|----------------|----------------|
|           |       |      | SOIL           | SOIL           |
|           |       |      | -<br>18/6/2015 | -<br>18/6/2015 |
| PARAMETER | UOM   | LOR  | SE140881.006   | SE140881.007   |
| Mercury   | mg/kg | 0.01 | <0.01          | <0.01          |



# SE140881 R0

#### Moisture Content [AN002] Tested: 29/6/2015

|                |      |     | TPA1_0.5     | TPA1_1.0     | TPA2_0.2     | TPA2_1.0     | TP3A_0.5     |
|----------------|------|-----|--------------|--------------|--------------|--------------|--------------|
|                |      |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                |      |     |              |              |              |              |              |
|                |      |     | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    |
| PARAMETER      | UOM  | LOR | SE140881.001 | SE140881.002 | SE140881.003 | SE140881.004 | SE140881.005 |
| % Moisture     | %w/w | 1   | 8.4          | 7.9          | 14.9         | 6.8          | 10.5         |
| % Total Solids | %w/w | 1   | 91.6         | 92.1         | 85.1         | 93.2         | 89.5         |

|                |      |     | TP3A_1.0       | D01_180615     |
|----------------|------|-----|----------------|----------------|
|                |      |     | SOIL           | SOIL           |
|                |      |     | -<br>18/6/2015 | -<br>18/6/2015 |
| PARAMETER      | UOM  | LOR | SE140881.006   | SE140881.007   |
| % Moisture     | %w/w | 1   | 9.9            | 9.9            |
| % Total Solids | %w/w | 1   | 90.1           | 90.1           |



# SE140881 R0

#### Fibre Identification in soil [AN602] Tested: 30/6/2015

|                   |         |      | TPA1_0.5     | TPA1_1.0     | TPA2_0.2     | TPA2_1.0     | TP3A_0.5     |
|-------------------|---------|------|--------------|--------------|--------------|--------------|--------------|
|                   |         |      | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                   |         |      |              |              |              |              | -            |
|                   |         |      | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    | 18/6/2015    |
| PARAMETER         | UOM     | LOR  | SE140881.001 | SE140881.002 | SE140881.003 | SE140881.004 | SE140881.005 |
| Asbestos Detected | No unit | -    | No           | No           | No           | No           | No           |
| Estimated Fibres* | %w/w    | 0.01 | <0.01        | <0.01        | <0.01        | <0.01        | <0.01        |

|                   |         |      | TP3A_1.0     |
|-------------------|---------|------|--------------|
|                   |         |      | SOIL         |
|                   |         |      | -            |
|                   |         | 1.05 | 18/6/2015    |
| PARAMETER         | UOM     | LOR  | SE140881.006 |
| Asbestos Detected | No unit | -    | No           |
| Estimated Fibres* | %w/w    | 0.01 | <0.01        |



| METHOD      | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN002       | The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.                                                                                                                                                                                                                                                                                                                                                               |
| AN040/AN320 | A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the<br>digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample<br>basis. Based on USEPA method 200.8 and 6010C.                                                                                                                                                                                                                                                                                                                                                                                    |
| AN040       | A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AN312       | Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid,<br>mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury<br>vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser.<br>Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA<br>3112/3500                                                                                                                                                                                                        |
| AN602       | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM)<br>in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal<br>identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a<br>reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient<br>'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of<br>suspect fibres/bundles from the sample which cannot be returned. |
|             | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."                                                                                                                                                                                                                                                                                                                 |
|             | The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | <ul> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>                                                                                                                                                                                                           |

| FOOT |       | TTC. |
|------|-------|------|
| FUUI | INU I | IEQ. |

| *  | Analysis not covered by the                             |
|----|---------------------------------------------------------|
| ** | scope of accreditation.<br>Indicative data, theoretical |
|    | holding time exceeded.                                  |

Performed by outside laboratory.

NVL No IS Ins LNR Sa

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

# Cocregesored 2916/1+ @ 8:57 an

| Lord Party States 1              |                                                                                                                  |                       | С              | HAIN OF C                        | NII CT                  |                |               |          |                                  | 0127                      |
|----------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|----------------------------------|-------------------------|----------------|---------------|----------|----------------------------------|---------------------------|
|                                  | Canberra                                                                                                         |                       | TURNARO        |                                  | 051                     | ODY            | FORM          |          |                                  | SGS Alexandria Environmen |
| PROJECT: 15                      |                                                                                                                  |                       |                | UND REQUIREMENTS:                |                         |                |               |          | LAB: SUS                         |                           |
|                                  | R: 3の2402<br>Schedule 2.2 (a)(ii)                                                                                |                       | LAB QUOT       | TE NO:                           | Non Stand               | fard TAT (List | due datoj:    |          | ATTENTION:                       |                           |
| PROJECT MANAG                    | The Sta                                                                                                          |                       | CONTACT        |                                  |                         |                | SEQUENCE NUMB |          | DISPATCH TO (ADDRESS & P         | SE140881 COC              |
| SAMPLED BY:                      | Schedule 2.2 (a)                                                                                                 |                       |                |                                  | _                       |                | 1 2 3 4       |          |                                  | Received: 26 – Jun – 2015 |
| NATE SAMPLED:                    | 18/6                                                                                                             |                       | and the second | RELINQUISHED BY                  | É                       | OF:<br>RECEIV  | 1 2 3 4       | 5 6 7    |                                  | Schedule 2.2 (a)(ii       |
| and they first the monthly first | rill default to PM If blank);<br>rill default to PM If blank);                                                   |                       | Contraction of | STATES HUMES                     | E                       | DATE/T         |               |          | RELINQUISHED BY:                 | RECEIVED BY:              |
| Special Laboratory               | and the second second second second second second second second second second second second second second second |                       |                | 24/6                             |                         |                |               |          | DATE/TIME-                       | 26/06/15 @ 11-30          |
|                                  |                                                                                                                  |                       |                |                                  |                         |                |               |          |                                  |                           |
|                                  |                                                                                                                  | SAMPLE DETAILS        |                |                                  |                         |                |               | ANALYSIS | REQUIRED                         | COMMENTS                  |
|                                  |                                                                                                                  |                       |                |                                  |                         |                | 5             |          |                                  | COMMENTS                  |
| LABID                            | SAMPLE ID                                                                                                        | DATE / TIME           | SAMPLE         | CONTAINER TYPE &<br>PRESERVATIVE | TOTAL NO.<br>CONTAIMERS | to startes     | metals        |          |                                  |                           |
|                                  |                                                                                                                  | and the second second | 0) «S          |                                  | CON                     | ASA            | 8             |          |                                  |                           |
|                                  | TPAL_D 0                                                                                                         | 166                   | 50-1           |                                  |                         |                |               |          |                                  | Hold                      |
|                                  | TPA1-0.2                                                                                                         |                       | 1              |                                  |                         |                |               |          |                                  | Hold                      |
|                                  |                                                                                                                  |                       |                |                                  |                         |                | X             |          |                                  | - Auri                    |
| 1                                | TPA1_0.5                                                                                                         |                       |                |                                  |                         | 0              | V             |          |                                  |                           |
| 2                                | TP.41-1.0                                                                                                        |                       |                |                                  | -                       | X              | 5             |          |                                  |                           |
|                                  | TP.41_2-0                                                                                                        |                       |                |                                  |                         |                |               |          |                                  | Hold                      |
|                                  | TP42_0.0                                                                                                         |                       |                |                                  |                         |                |               |          |                                  | Hold                      |
| 5                                |                                                                                                                  |                       |                |                                  |                         | X              | X             |          |                                  |                           |
| 3                                | TPA2_0.2                                                                                                         |                       |                |                                  | 1                       |                |               |          |                                  | Hold                      |
|                                  | TP42-0-5                                                                                                         |                       |                |                                  |                         | X              | X             |          |                                  |                           |
| 4                                | TPA2_1-0                                                                                                         |                       |                |                                  |                         | A              | 6             |          |                                  | toly                      |
|                                  | TPA2 2.0                                                                                                         |                       |                |                                  |                         |                |               |          |                                  | Hold                      |
|                                  | TPA2_2.0<br>TPA3_0.0                                                                                             | 1                     | T              |                                  |                         | 法              | X             |          |                                  | Flora                     |
|                                  | 11945_0-0                                                                                                        |                       |                | TOTA                             | The second              |                |               |          | be placed in project file, PINIC | o be retained in CoO book |

| SMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nience                                               |                | С                | HAIN OF C                        | UST                     |                | FODA         |            |          |           |               | 01                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------|------------------|----------------------------------|-------------------------|----------------|--------------|------------|----------|-----------|---------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Canberra<br>Sabella                                  |                | TURNAROL         | IND DESIGN                       | Standard -              |                | TUNI         | VI         | LAB:     |           |               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3002402                                              |                |                  |                                  | ] Non Stand             |                | due detail   |            |          | 54        | S             |                      |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                                      |                | LAB QUOT         | E NO:                            |                         |                | SEQUENCE NUI | ADED (CLU) | ATTENTIC | )N:       |               |                      |
| ROJECT MANAGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      | -              | CONTACT          | PH:                              |                         |                |              | 1 5 6 7    | DISPATCH | TO (ADDRI | ESS & PHONE N | 0.):                 |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Schedule 2.2 (a)(i                                   | Carl and a     |                  |                                  |                         | 20 10 1 1 10 1 |              | 4 5 6 7    |          |           |               |                      |
| TE SAMPLED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                |                  | RELINQUISHED BY:                 |                         | RECEIV         |              |            | RELINQU  | ISHED BY: |               | RECEIVED Schedule 2. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | default to PM if blank):<br>default to PM if blank): |                |                  | DATE/TIME:                       |                         | DATE/T         | IME:         |            | DATE/TIN |           |               | DATE/TIME            |
| ecial Laboratory In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                |                  |                                  |                         |                |              |            |          |           |               | 26 lochs @           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                |                  |                                  |                         |                |              |            |          |           |               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | SAMPLE DETAILS |                  |                                  |                         |                |              | ANALYSIS   | REQUIRED |           |               | COMMENTS             |
| LAB ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE ID                                            | DATE / TIME    | SAMPLE<br>MATRIX | CONTAINER TYPE &<br>PRESERVATIVE | TOTAL NO.<br>CONTAINERS | Ashests        | 8 metris     | D          | EC       | El'       | VEN           |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TP34_0.2                                             | 15/6           | 501              |                                  |                         |                | ~~           |            | 29       | JUN       | 015           | Hold                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TP3A_0.5                                             |                |                  |                                  |                         | ×              | ×            |            |          |           |               | -                    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1734-1.0                                             |                |                  |                                  | ×                       | ×              | ×            |            |          |           |               |                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PBA_20                                               |                |                  |                                  |                         |                |              |            |          |           |               | Hold                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101-18-615                                           | <b>V</b>       | 4                |                                  |                         | X              | X            |            |          |           |               |                      |
| From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE137450                                             |                |                  |                                  | 1.000                   |                | ~            |            |          |           |               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TP07_0.5                                             |                |                  |                                  |                         | A              | X            |            |          |           |               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TP07_1.8-20                                          |                |                  |                                  |                         | X              | T            |            |          |           |               |                      |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                  |                                  |                         | -              |              |            |          |           |               |                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                |                  |                                  |                         |                |              |            |          |           |               |                      |

|   | _ |   |  |
|---|---|---|--|
|   |   |   |  |
| 2 |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   | - |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
| 2 |   |   |  |
| 1 |   |   |  |
|   |   | 1 |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   | 1 | Ľ |  |
|   |   |   |  |
|   |   | _ |  |
| 1 |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   | - |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
| 2 |   |   |  |
| 1 |   |   |  |
|   |   |   |  |
|   |   |   |  |

Subject: From: Sent: To:

# 

5

Monday, 29 June 2015 1:01 PM AU.SampleReceipt.Sydney (Sydney) RE: 3002402

No thank you.

Schedule 2.2 (a)(II) Environmental Scientist SMEC – Australia & New Zealand Division T +Schedule 2.2 (a)(II)

From: AU.SampleReceipt.Sydney (Sydney) [mailto:AU.SampleReceipt.Sydney@sgs.com] Sent: Monday. 29 June 2015 1:00 PM To: Sonedule 2.2 (a)(ii)

Subject: RE: 3002402

Do you need asbestos testing on sample D01\_180615.

Environmental Services

Sample Receipt

Phone: +

Sent: Monday, 29 June 2015 8:57 AM To: AU.SampleReceipt.Sydney (Sydney) Subject: RE: 3002402 From: Schedule 2.2 (a)(ii)

Hi SGS,

Can you please analyse those samples as attached.

Please note – additional analysis for SE137450 also included in attached COC.

Thanks,

SMEC – Australia & New Zealand Division T +Schedule 22 avr

From: AU.SampleReceipt.Sydney (Sydney) [mailto AU.SampleReceipt.Sydney@sgs.com] Sent: Friday, 26 June 2015 12:26 PM To: Schedule 22 Intern To: So

Subject: 3002402





|              | INTERPRETI                   | <u>/E QUALITY CONTROL I</u> | REPORT                                                |
|--------------|------------------------------|-----------------------------|-------------------------------------------------------|
| Work Order   | : ES1506748                  | Page                        | : 1 of 5                                              |
| Client       | : SMEC AUSTRALIA PTY LTD     | Laboratory                  | : Environmental Division Sydney                       |
| Contact      | Schedule 2.2 (a)(ii)         | Contact                     | : Client Services                                     |
| Address      | : P O BOX 1654               | Address                     | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | FYSHWICK ACT, AUSTRALIA 2609 |                             |                                                       |
| E-mail       | Schedule 2.2 (a)(ii)         | E-mail                      | : sydney@alsglobal.com                                |
| Telephone    | Schedule 2.2 (a)(ii)         | Telephone                   | : +61-2-8784 8555                                     |
| Facsimile    | Schedule 2.2 (a)(ii)         | Facsimile                   | : +61-2-8784 8500                                     |
| Project      | : 3002402 ISABELLA WEIR      | QC Level                    | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |
| Site         | :                            |                             |                                                       |
| C-O-C number | : 0338 & 0342                | Date Samples Received       | : 23-MAR-2015                                         |
| Sampler      | : ET                         | Issue Date                  | : 30-MAR-2015                                         |
| Order number | :                            |                             |                                                       |
|              |                              | No. of samples received     | : 1                                                   |
| Quote number | : EN/025/14                  | No. of samples analysed     | : 1                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



#### Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                                    |             |                |                        | Evaluation: | × = Holding time | breach ; 🗸 = Withir | 1 holding time. |
|-------------------------------------------------|-------------|----------------|------------------------|-------------|------------------|---------------------|-----------------|
| Method                                          | Sample Date | Ex             | traction / Preparation |             |                  | Analysis            |                 |
| Container / Client Sample ID(s)                 |             | Date extracted | Due for extraction     | Evaluation  | Date analysed    | Due for analysis    | Evaluation      |
| EA055: Moisture Content                         |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EA055-103)<br>QA4 | 19-MAR-2015 |                |                        |             | 24-MAR-2015      | 02-APR-2015         | ✓               |
| EG005T: Total Metals by ICP-AES                 |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EG005T)<br>QA4    | 19-MAR-2015 | 25-MAR-2015    | 15-SEP-2015            | 1           | 26-MAR-2015      | 15-SEP-2015         | ~               |
| EG035T: Total Recoverable Mercury by FIMS       |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EG035T)<br>QA4    | 19-MAR-2015 | 25-MAR-2015    | 16-APR-2015            | 1           | 27-MAR-2015      | 16-APR-2015         | ✓               |
| EP068A: Organochlorine Pesticides (OC)          |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EP068)<br>QA4     | 19-MAR-2015 | 26-MAR-2015    | 02-APR-2015            | 1           | 26-MAR-2015      | 05-MAY-2015         | ✓               |
| EP068B: Organophosphorus Pesticides (OP)        |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EP068)<br>QA4     | 19-MAR-2015 | 26-MAR-2015    | 02-APR-2015            | 1           | 26-MAR-2015      | 05-MAY-2015         | ✓               |
| EP080/071: Total Petroleum Hydrocarbons         |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EP071)<br>QA4     | 19-MAR-2015 | 26-MAR-2015    | 02-APR-2015            | 1           | 26-MAR-2015      | 05-MAY-2015         | 1               |
| EP080: BTEXN                                    |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EP080)<br>QA4     | 19-MAR-2015 | 24-MAR-2015    | 02-APR-2015            | ~           | 27-MAR-2015      | 02-APR-2015         | ~               |
| EP080/071: Total Petroleum Hydrocarbons         |             |                |                        |             |                  |                     |                 |
| Soil Glass Jar - Unpreserved (EP080)<br>QA4     | 19-MAR-2015 | 24-MAR-2015    | 02-APR-2015            | 1           | 27-MAR-2015      | 02-APR-2015         | ✓               |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                     |           |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|----------------------------------|-----------|----|---------|------------|-------------------|-----------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type      |           | Co | ount    |            | Rate (%)          |                 | Quality Control Specification                                                             |
| Analytical Methods               | Method    | 00 | Reaular | Actual     | Expected          | Evaluation      |                                                                                           |
| Laboratory Duplicates (DUP)      |           |    |         |            |                   |                 |                                                                                           |
| Moisture Content                 | EA055-103 | 2  | 20      | 10.0       | 10.0              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Pesticides by GCMS               | EP068     | 1  | 7       | 14.3       | 10.0              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Mercury by FIMS            | EG035T    | 2  | 20      | 10.0       | 10.0              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 2  | 20      | 10.0       | 10.0              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH - Semivolatile Fraction      | EP071     | 1  | 10      | 10.0       | 10.0              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH Volatiles/BTEX               | EP080     | 2  | 17      | 11.8       | 10.0              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Laboratory Control Samples (LCS) |           |    |         |            |                   |                 |                                                                                           |
| Pesticides by GCMS               | EP068     | 1  | 7       | 14.3       | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Mercury by FIMS            | EG035T    | 1  | 20      | 5.0        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 1  | 20      | 5.0        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH - Semivolatile Fraction      | EP071     | 1  | 10      | 10.0       | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH Volatiles/BTEX               | EP080     | 1  | 17      | 5.9        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Method Blanks (MB)               |           |    |         |            |                   |                 |                                                                                           |
| Pesticides by GCMS               | EP068     | 1  | 7       | 14.3       | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Mercury by FIMS            | EG035T    | 1  | 20      | 5.0        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 1  | 20      | 5.0        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH - Semivolatile Fraction      | EP071     | 1  | 10      | 10.0       | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH Volatiles/BTEX               | EP080     | 1  | 17      | 5.9        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Matrix Spikes (MS)               |           |    |         |            |                   |                 |                                                                                           |
| Pesticides by GCMS               | EP068     | 1  | 7       | 14.3       | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Mercury by FIMS            | EG035T    | 1  | 20      | 5.0        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| Total Metals by ICP-AES          | EG005T    | 1  | 20      | 5.0        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH - Semivolatile Fraction      | EP071     | 1  | 10      | 10.0       | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |
| TRH Volatiles/BTEX               | EP080     | 1  | 17      | 5.9        | 5.0               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                          |



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------|-----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                  | EA055-103 | SOIL   | In-house. A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                       |
| Total Metals by ICP-AES                           | EG005T    | SOIL   | In house: Referenced to APHA 21st ed., 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                         |
| Total Mercury by FIMS                             | EG035T    | SOIL   | In house: Referenced to AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation)<br>AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined<br>following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2<br>which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration<br>curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Pesticides by GCMS                                | EP068     | SOIL   | (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against<br>an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method<br>504,505)                                                                                                                                                                                                                                                                                |
| TRH - Semivolatile Fraction                       | EP071     | SOIL   | (USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.                                                                                                                                                                                                                                                                                                                                                                              |
| TRH Volatiles/BTEX                                | EP080     | SOIL   | (USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.                                                                                                                                                                                                                                                                                                                                                     |
| Preparation Methods                               | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Methanolic Extraction of Soils for Purge and Trap | * ORG16   | SOIL   | (USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                                                                                                                                             |
| Tumbler Extraction of Solids                      | ORG17     | SOIL   | In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.                                                                                                                                                                                                                                                                         |



### **Summary of Outliers**

#### **Outliers : Quality Control Samples**

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

#### Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

#### **Regular Sample Surrogates**

• For all regular sample matrices, no surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.



|              | QUAL                                           | ITY CONTROL REPORT      | The second second second second second second second second second second second second second second second s |
|--------------|------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|
| Work Order   | ES1506748                                      | Page                    | : 1 of 11                                                                                                      |
| Client       | : SMEC AUSTRALIA PTY LTD                       | Laboratory              | : Environmental Division Sydney                                                                                |
| Contact      | Schedule 2.2 (a)(ii)                           | Contact                 | : Client Services                                                                                              |
| Address      | E P O BOX 1654<br>FYSHWICK ACT, AUSTRALIA 2609 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164                                                          |
| E-mail       | Schedule 2.2 (a)(ii)                           | E-mail                  | : sydney@alsglobal.com                                                                                         |
| Telephone    | Schedule 2.2 (a)(ii)                           | Telephone               | : +61-2-8784 8555                                                                                              |
| Facsimile    | Schedule 2.2 (a)(ii)                           | Facsimile               | : +61-2-8784 8500                                                                                              |
| Project      | : 3002402 ISABELLA WEIR                        | QC Level                | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                             |
| Site         | :                                              |                         |                                                                                                                |
| C-O-C number | : 0338 & 0342                                  | Date Samples Received   | : 23-MAR-2015                                                                                                  |
| Sampler      | : ET                                           | Issue Date              | : 30-MAR-2015                                                                                                  |
| Order number | :                                              |                         |                                                                                                                |
|              |                                                | No. of samples received | :1                                                                                                             |
| Quote number | : EN/025/14                                    | No. of samples analysed | : 1                                                                                                            |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



#### NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

| Accredited for                 | Signatories          | Position              | Accreditation Category |
|--------------------------------|----------------------|-----------------------|------------------------|
| compliance with ISO/IEC 17025. | Schedule 2.2 (a)(ii) | Senior Spectroscopist | Sydney Inorganics      |
|                                | Schedule 2.2 (a)(ii) | Organic Coordinator   | Sydney Organics        |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

|            | 1295 |                          |
|------------|------|--------------------------|
| Page       |      | : 2 of 11                |
| Work Order |      | : ES1506748              |
| Client     |      | : SMEC AUSTRALIA PTY LTD |
| Project    |      | : 3002402 ISABELLA WEIR  |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

# = Indicates failed QC



#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                            | Laboratory I    | Duplicate (DUP) Report |          |                     |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|----------|---------------------|
| Laboratory sample ID     | Client sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method: Compound                            | CAS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOR   | Unit                                                                                                                                                                                       | Original Result | Duplicate Result       | RPD (%)  | Recovery Limits (%) |
| A055: Moisture Co        | ontent (QC Lot: 3872066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                            |                 |                        |          |                     |
| ES1506695-005            | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EA055-103: Moisture Content (dried @ 103°C) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0   | %                                                                                                                                                                                          | 16.6            | 17.4                   | 4.5      | 0% - 50%            |
| ES1506767-001            | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EA055-103: Moisture Content (dried @ 103°C) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0   | %                                                                                                                                                                                          | 30.1            | 31.4                   | 4.4      | 0% - 20%            |
| G005T: Total Meta        | Is by ICP-AES (QC Lot:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3873890)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                            |                 |                        |          |                     |
| ES1506676-056            | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EG005T: Beryllium                           | 7440-41-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     | mg/kg                                                                                                                                                                                      | <1              | <1                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Cadmium                             | 7440-43-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     | mg/kg                                                                                                                                                                                      | <1              | <1                     | 0.0      | No Limit            |
|                          | Districtory sample ID         Client sample ID         Method: Compound           1555: Moisture Content (QC Lot: 3872066)         EA055-103: Moisture Content (dried @ 103°C)           1506695-005         Anonymous         EA055-103: Moisture Content (dried @ 103°C)           1506676-001         Anonymous         EA055-103: Moisture Content (dried @ 103°C)           1506676-056         Anonymous         EG005T: Beryllium           1506676-056         Anonymous         EG005T: Chormium           15066748-001         QA4         EG005T: Selenium           1506748-001         QA4         EG005T: Chormium           1506748-001         QA4         EG005T: Chormium           15067748-001         QA4         EG005T: Chormium           15067748-001         QA4         EG005T: Chormium           15067748-001         QA4         EG005T: Chormium           15067748-001         QA4         EG005T: Chormium           1506775         Anonymous         EG005T: Chormium           E | EG005T: Barium                              | 7440-39-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10    | mg/kg                                                                                                                                                                                      | 30              | 20                     | 47.5     | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Chromium                            | 7440-47-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2     | mg/kg                                                                                                                                                                                      | 7               | 5                      | 27.7     | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Cobalt                              | 7440-48-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2     | mg/kg                                                                                                                                                                                      | <2              | <2                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Nickel                              | 7440-02-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2     | mg/kg                                                                                                                                                                                      | 3               | 2                      | 42.9     | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7440-38-2                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg | <5                                                                                                                                                                                         | <5              | 0.0                    | No Limit |                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Copper                              | 7440-50-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | 0         %         16.6         17.4         4.5           0         %         30.1         31.4         4.4           mg/kg         <1         <1         0.0           mg/kg         <1 | 0.0             | No Limit               |          |                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Lead                                | 7439-92-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 6               | <5                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Manganese                           | 7439-96-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 22              | 20                     | 11.0     | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Selenium                            | 7782-49-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | <5              | <5                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Vanadium                            | 7440-62-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 11              | 9                      | 13.2     | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Zinc                                | 7440-66-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 11              | 6                      | 56.4     | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Boron                               | 7440-42-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50    | mg/kg                                                                                                                                                                                      | <50             | <50                    | 0.0      | No Limit            |
| S1506748-001             | QA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EG005T: Beryllium                           | 7440-41-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     | mg/kg                                                                                                                                                                                      | <1              | <1                     | 0.0      |                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Cadmium                             | 7440-43-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     | mg/kg                                                                                                                                                                                      | <1              | <1                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Barium                              | 7440-39-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10    | mg/kg                                                                                                                                                                                      | 50              | 60                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Chromium                            | rymm         7440-43-9         1         mg/kg           idmium         7440-39-3         10         mg/kg           irium         7440-39-3         10         mg/kg           iromium         7440-47-3         2         mg/kg           ibalt         7440-47-3         2         mg/kg           ibalt         7440-48-4         2         mg/kg           senic         7440-02-0         2         mg/kg           spper         7440-50-8         5         mg/kg           add         7439-92-1         5         mg/kg           anganese         7439-96-5         5         mg/kg           nadium         7782-49-2         5         mg/kg           nadium         7440-62-2         5         mg/kg           ron         7440-66-6         5         mg/kg           ron         7440-64-8         50         mg/kg           ryllium         7440-42-8         50         mg/kg           romium         7440-43-9         1         mg/kg           romium         7440-43-3         2         mg/kg           romium         7440-43-3         2         mg/kg           senic | mg/kg | 14                                                                                                                                                                                         | 15              | 8.2                    | No Limit |                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Cobalt                              | 7440-48-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2     | mg/kg                                                                                                                                                                                      | 5               | 5                      | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Nickel                              | 7440-02-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2     | mg/kg                                                                                                                                                                                      | 3               | 3                      | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Arsenic                             | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | <5              | <5                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Copper                              | 7440-50-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | <5              | <5                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Lead                                | 7439-92-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 12              | 12                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Manganese                           | 7439-96-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 403             | 413                    | 2.4      | 0% - 20%            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Selenium                            | 7782-49-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | <5              | <5                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Vanadium                            | 7440-62-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 33              | 31                     | 3.8      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Zinc                                | 7440-66-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | mg/kg                                                                                                                                                                                      | 10              | 10                     | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EG005T: Boron                               | 7440-42-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50    | mg/kg                                                                                                                                                                                      | <50             | <50                    | 0.0      | No Limit            |
| G035T: <u>Total Reco</u> | overable Me <u>rcury by FIM</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /IS (QC Lot: 3873891)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                            |                 |                        |          |                     |
| S1506676-056             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 7439-97-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1   | mg/kg                                                                                                                                                                                      | <0.1            | <0.1                   | 0.0      | No Limit            |
| S1506748-001             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 7439-97-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1   |                                                                                                                                                                                            | <0.1            | <0.1                   | 0.0      | No Limit            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                            |                 |                        |          | 1                   |
| S1506905-001             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 319-84-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05  | ma/ka                                                                                                                                                                                      | <0.05           | <0.05                  | 0.0      | No Limit            |
|                          | , 1011,11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LI-000. alpha-DHC                           | 515-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00  | iiig/ikg                                                                                                                                                                                   | -0.00           | -0.00                  | 0.0      |                     |

| 1297       |                          |
|------------|--------------------------|
| Page       | : 4 of 11                |
| Work Order | : ES1506748              |
| Client     | : SMEC AUSTRALIA PTY LTD |
| Project    | : 3002402 ISABELLA WEIR  |



| Sub-Matrix: SOIL     | y sample ID       Clent sample ID       Method: Compound       CAS         Organochlorine Pesticides (OC) (QC Lot: 3873862) - continued       1         D5-001       Anonymous       EP068: Hexachlorobenzene (HCB)       1         EP068: beta-BHC       3       2         EP068: detta-BHC       3       2         EP068: deta-BHC       9       2         EP068: deta-Endosulfan       3       3         EP068: deta-Endosulfan       3       3         EP068: endin aldehyde       74       2         EP068: Endosulfan sulfate       10       2 |                                                 |            |      |       | Laboratory I    | Duplicate (DUP) Report |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|------|-------|-----------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Laboratory sample ID | Client sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method: Compound                                | CAS Number | LOR  | Unit  | Original Result | Duplicate Result       | RPD (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recovery Limits (% |
| EP068A: Organochi    | lorine Pesticides (OC) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QC Lot: 3873862) - continued                    |            |      |       |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| ES1506905-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EP068: Hexachlorobenzene (HCB)                  | 118-74-1   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: beta-BHC                                 | 319-85-7   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: gamma-BHC                                | 58-89-9    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: delta-BHC                                | 319-86-8   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Heptachlor                               | 76-44-8    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Aldrin                                   | 309-00-2   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Heptachlor epoxide                       | 1024-57-3  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: trans-Chlordane                          | 5103-74-2  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: alpha-Endosulfan                         | 959-98-8   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: cis-Chlordane                            | 5103-71-9  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Dieldrin                                 | 60-57-1    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: 4.4`-DDE                                 | 72-55-9    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Endrin                                   | 72-20-8    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: beta-Endosulfan                          | 33213-65-9 | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: 4.4`-DDD                                 | 72-54-8    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Endrin aldehyde                          | 7421-93-4  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Endosulfan sulfate                       | 1031-07-8  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Endrin ketone                            | 53494-70-5 | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: 4.4`-DDT                                 | 50-29-3    | 0.2  | mg/kg | <0.2            | <0.2                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Methoxychlor                             | 72-43-5    | 0.2  | mg/kg | <0.2            | <0.2                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
| P068B: Organoph      | osphorus Pesticides (OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P) (QC Lot: 3873862)                            |            |      |       |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| ES1506905-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EP068: Dichlorvos                               | 62-73-7    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Demeton-S-methyl                         | 919-86-8   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 60-51-5    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Diazinon                                 | 333-41-5   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 5598-13-0  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 121-75-5   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0 | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Fenthion                                 | 55-38-9    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Chlorpyrifos                             | 2921-88-2  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 23505-41-1 | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Chlorfenvinphos                          | 470-90-6   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Bromophos-ethyl                          | 4824-78-6  | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 22224-92-6 | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 34643-46-4 | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Ethion                                   | 563-12-2   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Carbophenothion                          | 786-19-6   | 0.05 | mg/kg | <0.05           | <0.05                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Azinphos Methyl                          | 86-50-0    | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 6923-22-4  | 0.2  | mg/kg | <0.2            | <0.2                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Monocrotophos                            | 0920-22-41 | 0.2  |       |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP068: Monocrotophos<br>EP068: Parathion-methyl | 298-00-0   | 0.2  | mg/kg | <0.2            | <0.2                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit           |



| Sub-Matrix: SOIL     |                      |                                            |            |     |       | Laboratory      | Duplicate (DUP) Report |         |                    |
|----------------------|----------------------|--------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound                           | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| EP080/071: Total Pe  | troleum Hydrocarbons | (QC Lot: 3871489)                          |            |     |       |                 |                        |         |                    |
| ES1506658-001        | Anonymous            | EP080: C6 - C9 Fraction                    |            | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit           |
| ES1506658-043        | Anonymous            | EP080: C6 - C9 Fraction                    |            | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit           |
| EP080/071: Total Pe  | troleum Hydrocarbons | (QC Lot: 3873863)                          |            |     |       |                 |                        |         |                    |
| ES1506905-001        | Anonymous            | EP071: C15 - C28 Fraction                  |            | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit           |
|                      |                      | EP071: C29 - C36 Fraction                  |            | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit           |
|                      |                      | EP071: C10 - C14 Fraction                  |            | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit           |
| EP080/071: Total Re  | coverable Hydrocarbo | ns - NEPM 2013 Fractions (QC Lot: 3871489) |            |     |       |                 |                        |         |                    |
| ES1506658-001        | Anonymous            | EP080: C6 - C10 Fraction                   | C6_C10     | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit           |
| ES1506658-043        | Anonymous            | EP080: C6 - C10 Fraction                   | <br>C6_C10 | 10  | mg/kg | <10             | <10                    | 0.0     | No Limit           |
| EP080/071: Total Re  | coverable Hydrocarbo | ns - NEPM 2013 Fractions (QC Lot: 3873863) |            |     |       |                 |                        |         |                    |
| ES1506905-001 Ar     | Anonymous            | EP071: >C16 - C34 Fraction                 |            | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit           |
|                      |                      | EP071: >C34 - C40 Fraction                 |            | 100 | mg/kg | <100            | <100                   | 0.0     | No Limit           |
|                      |                      | EP071: >C10 - C16 Fraction                 | >C10_C16   | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit           |
| EP080: BTEXN (QC     | Lot: 3871489)        |                                            |            |     |       |                 |                        |         |                    |
| ES1506658-001        | Anonymous            | EP080: Benzene                             | 71-43-2    | 0.2 | mg/kg | <0.2            | <0.2                   | 0.0     | No Limit           |
|                      |                      | EP080: Toluene                             | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      | EP080: Ethylbenzene                        | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      | EP080: meta- & para-Xylene                 | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      |                                            | 106-42-3   |     |       |                 |                        |         |                    |
|                      |                      | EP080: ortho-Xylene                        | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      | EP080: Naphthalene                         | 91-20-3    | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |
| ES1506658-043        | Anonymous            | EP080: Benzene                             | 71-43-2    | 0.2 | mg/kg | <0.2            | <0.2                   | 0.0     | No Limit           |
|                      |                      | EP080: Toluene                             | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      | EP080: Ethylbenzene                        | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      | EP080: meta- & para-Xylene                 | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      |                                            | 106-42-3   |     |       |                 |                        |         |                    |
|                      |                      | EP080: ortho-Xylene                        | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.0     | No Limit           |
|                      |                      | EP080: Naphthalene                         | 91-20-3    | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                            |                  |      |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | Spike (LCS) Report |            |  |
|---------------------------------------------|------------------|------|-------|-------------------|---------------|-------------------------------|--------------------|------------|--|
|                                             |                  |      |       | Report            | Spike         | Spike Recovery (%)            | Recovery           | Limits (%) |  |
| Method: Compound                            | CAS Number       | LOR  | Unit  | Result            | Concentration | LCS                           | Low                | High       |  |
| EG005T: Total Metals by ICP-AES (QCLot: 387 |                  |      |       |                   |               |                               |                    |            |  |
| EG005T: Arsenic                             | 7440-38-2        | 5    | mg/kg | <5                | 21.7 mg/kg    | 104                           | 92                 | 130        |  |
| EG005T: Barium                              | 7440-39-3        | 10   | mg/kg | <10               | 143 mg/kg     | 100                           | 91                 | 125        |  |
| EG005T: Beryllium                           | 7440-41-7        | 1    | mg/kg | <1                | 5.63 mg/kg    | 107                           | 98                 | 128        |  |
| EG005T: Boron                               | 7440-42-8        | 50   | mg/kg | <50               |               |                               |                    |            |  |
| EG005T: Cadmium                             | 7440-43-9        | 1    | mg/kg | <1                | 4.64 mg/kg    | 93.7                          | 87                 | 121        |  |
| G005T: Chromium                             | 7440-47-3        | 2    | mg/kg | <2                | 43.9 mg/kg    | 95.2                          | 80                 | 136        |  |
| EG005T: Cobalt                              | 7440-48-4        | 2    | mg/kg | <2                | 16.0 mg/kg    | 105                           | 89                 | 123        |  |
| EG005T: Copper                              | 7440-50-8        | 5    | mg/kg | <5                | 32.0 mg/kg    | 102                           | 93                 | 127        |  |
| EG005T: Lead                                | 7439-92-1        | 5    | mg/kg | <5                | 40.0 mg/kg    | 93.2                          | 86                 | 124        |  |
| G005T: Manganese                            | 7439-96-5        | 5    | mg/kg | <5                | 130 mg/kg     | 99.0                          | 97                 | 131        |  |
| G005T: Nickel                               | 7440-02-0        | 2    | mg/kg | <2                | 55.0 mg/kg    | 101                           | 93                 | 131        |  |
| G005T: Selenium                             | 7782-49-2        | 5    | mg/kg | <5                | 5.37 mg/kg    | 111                           | 75                 | 131        |  |
| G005T: Vanadium                             | 7440-62-2        | 5    | mg/kg | <5                | 29.6 mg/kg    | 105                           | 98                 | 128        |  |
| EG005T: Zinc                                | 7440-66-6        | 5    | mg/kg | <5                | 60.8 mg/kg    | 98.1                          | 81                 | 133        |  |
| EG035T: Total Recoverable Mercury by FIMS   | (QCLot: 3873891) |      |       |                   |               |                               |                    |            |  |
| G035T: Mercury                              | 7439-97-6        | 0.1  | mg/kg | <0.1              | 2.57 mg/kg    | 81.4                          | 70                 | 105        |  |
| P068A: Organochlorine Pesticides (OC) (QC   | Lot: 3873862)    |      |       |                   |               |                               |                    |            |  |
| P068: alpha-BHC                             | 319-84-6         | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 104                           | 71                 | 113        |  |
| P068: Hexachlorobenzene (HCB)               | 118-74-1         | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 90.4                          | 66                 | 122        |  |
| P068: beta-BHC                              | 319-85-7         | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 76.8                          | 69                 | 119        |  |
| P068: gamma-BHC                             | 58-89-9          | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 85.0                          | 71                 | 115        |  |
| P068: delta-BHC                             | 319-86-8         | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 80.6                          | 65                 | 113        |  |
| P068: Heptachlor                            | 76-44-8          | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 86.3                          | 68                 | 116        |  |
| P068: Aldrin                                | 309-00-2         | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 87.9                          | 68                 | 118        |  |
| P068: Heptachlor epoxide                    | 1024-57-3        | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 93.1                          | 68                 | 116        |  |
| P068: trans-Chlordane                       | 5103-74-2        | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 75.2                          | 68                 | 120        |  |

 Page
 : 7 of 11

 Work Order
 : ES1506748

 Client
 : SMEC AUSTRALIA PTY LTD

 Project
 : 3002402 ISABELLA WEIR



| Sub-Matrix: SOIL                                      |            |      |       | Method Blank (MB) |               | Laboratory Control Spike (LCS |          |            |  |
|-------------------------------------------------------|------------|------|-------|-------------------|---------------|-------------------------------|----------|------------|--|
|                                                       |            |      |       | Report            | Spike         | Spike Recovery (%)            | Recovery | Limits (%) |  |
| Method: Compound                                      | CAS Number | LOR  | Unit  | Result            | Concentration | LCS                           | Low      | High       |  |
| EP068A: Organochlorine Pesticides (OC) (QCLot: 387386 | ·          |      |       |                   |               |                               |          |            |  |
| EP068: alpha-Endosulfan                               | 959-98-8   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 84.1                          | 69       | 119        |  |
| EP068: cis-Chlordane                                  | 5103-71-9  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 79.8                          | 67       | 121        |  |
| EP068: Dieldrin                                       | 60-57-1    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 80.0                          | 66       | 118        |  |
| P068: 4.4`-DDE                                        | 72-55-9    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 91.0                          | 69       | 117        |  |
| P068: Endrin                                          | 72-20-8    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 108                           | 67       | 123        |  |
| P068: beta-Endosulfan                                 | 33213-65-9 | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 80.9                          | 76       | 120        |  |
| P068: 4.4`-DDD                                        | 72-54-8    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 109                           | 76       | 120        |  |
| P068: Endrin aldehyde                                 | 7421-93-4  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 74.8                          | 57.3     | 115        |  |
| EP068: Endosulfan sulfate                             | 1031-07-8  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 105                           | 60       | 124        |  |
| P068: 4.4`-DDT                                        | 50-29-3    | 0.2  | mg/kg | <0.2              | 0.5 mg/kg     | 81.0                          | 67       | 127        |  |
| P068: Endrin ketone                                   | 53494-70-5 | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 79.6                          | 65       | 123        |  |
| P068: Methoxychlor                                    | 72-43-5    | 0.2  | mg/kg | <0.2              | 0.5 mg/kg     | 77.8                          | 65       | 129        |  |
| EP068B: Organophosphorus Pesticides (OP) (QCLot: 387  | 3862)      |      |       |                   |               |                               |          |            |  |
| EP068: Dichlorvos                                     | 62-73-7    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 109                           | 56       | 126        |  |
| EP068: Demeton-S-methyl                               | 919-86-8   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 93.1                          | 64       | 128        |  |
| EP068: Monocrotophos                                  | 6923-22-4  | 0.2  | mg/kg | <0.2              | 0.5 mg/kg     | 94.1                          | 54       | 122        |  |
| EP068: Dimethoate                                     | 60-51-5    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 87.1                          | 64       | 124        |  |
| EP068: Diazinon                                       | 333-41-5   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 88.4                          | 73       | 117        |  |
| EP068: Chlorpyrifos-methyl                            | 5598-13-0  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 80.1                          | 55       | 119        |  |
| EP068: Parathion-methyl                               | 298-00-0   | 0.2  | mg/kg | <0.2              | 0.5 mg/kg     | 97.0                          | 69       | 123        |  |
| EP068: Malathion                                      | 121-75-5   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 82.1                          | 70       | 120        |  |
| EP068: Fenthion                                       | 55-38-9    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 108                           | 71       | 115        |  |
| EP068: Chlorpyrifos                                   | 2921-88-2  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 97.6                          | 68       | 114        |  |
| P068: Parathion                                       | 56-38-2    | 0.2  | mg/kg | <0.2              | 0.5 mg/kg     | 76.4                          | 68       | 122        |  |
| P068: Pirimphos-ethyl                                 | 23505-41-1 | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 84.2                          | 69       | 115        |  |
| P068: Chlorfenvinphos                                 | 470-90-6   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 83.4                          | 70       | 118        |  |
| P068: Bromophos-ethyl                                 | 4824-78-6  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 85.2                          | 68       | 116        |  |
| P068: Fenamiphos                                      | 22224-92-6 | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 85.5                          | 64       | 120        |  |
| P068: Prothiofos                                      | 34643-46-4 | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 93.9                          | 68       | 116        |  |

 Page
 : 8 of 11

 Work Order
 : ES1506748

 Client
 : SMEC AUSTRALIA PTY LTD

 Project
 : 3002402 ISABELLA WEIR



| ub-Matrix: SOIL                        |                                |               |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|----------------------------------------|--------------------------------|---------------|-------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                        |                                |               |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                       | CAS Number                     | LOR           | Unit  | Result            | Concentration                         | LCS                | Low      | High       |
| EP068B: Organophosphorus Pesticides (C | DP) (QCLot: 3873862) - continu | ed            |       |                   |                                       |                    |          |            |
| EP068: Ethion                          | 563-12-2                       | 0.05          | mg/kg | <0.05             | 0.5 mg/kg                             | 84.6               | 70       | 118        |
| EP068: Carbophenothion                 | 786-19-6                       | 0.05          | mg/kg | <0.05             | 0.5 mg/kg                             | 82.8               | 67       | 123        |
| P068: Azinphos Methyl                  | 86-50-0                        | 0.05          | mg/kg | <0.05             | 0.5 mg/kg                             | 66.4               | 42       | 126        |
| P080/071: Total Petroleum Hydrocarbons | s (QCLot: 3871489)             |               |       |                   |                                       |                    |          |            |
| P080: C6 - C9 Fraction                 |                                | 10            | mg/kg | <10               | 26 mg/kg                              | 98.6               | 68.4     | 128        |
| P080/071: Total Petroleum Hydrocarbons | G (QCLot: 3873863)             |               |       |                   |                                       |                    |          |            |
| P071: C10 - C14 Fraction               |                                | 50            | mg/kg | <50               | 200 mg/kg                             | 114                | 71       | 131        |
| P071: C15 - C28 Fraction               |                                | 100           | mg/kg | <100              | 300 mg/kg                             | 107                | 74       | 138        |
| P071: C29 - C36 Fraction               |                                | 100           | mg/kg | <100              | 200 mg/kg                             | 100                | 64       | 128        |
| P080/071: Total Recoverable Hydrocarbo | ons - NEPM 2013 Fractions (QC  | Lot: 3871489) |       |                   |                                       |                    |          |            |
| P080: C6 - C10 Fraction                | C6_C10                         | 10            | mg/kg | <10               | 31 mg/kg                              | 97.6               | 68.4     | 128        |
| P080/071: Total Recoverable Hydrocarbo | ons - NEPM 2013 Fractions (QC  | Lot: 3873863) |       |                   |                                       |                    |          |            |
| P071: >C10 - C16 Fraction              | >C10_C16                       | 50            | mg/kg | <50               | 250 mg/kg                             | 105                | 70       | 130        |
| P071: >C16 - C34 Fraction              |                                | 100           | mg/kg | <100              | 350 mg/kg                             | 114                | 74       | 138        |
| P071: >C34 - C40 Fraction              |                                | 50            | mg/kg | <100              | 150 mg/kg                             | 100                | 63       | 131        |
| :P080: BTEXN (QCLot: 3871489)          |                                |               |       |                   |                                       |                    |          |            |
| P080: Benzene                          | 71-43-2                        | 0.2           | mg/kg | <0.2              | 1 mg/kg                               | 97.7               | 62       | 116        |
| P080: Toluene                          | 108-88-3                       | 0.5           | mg/kg | <0.5              | 1 mg/kg                               | 96.8               | 62       | 128        |
| P080: Ethylbenzene                     | 100-41-4                       | 0.5           | mg/kg | <0.5              | 1 mg/kg                               | 95.2               | 58       | 118        |
| P080: meta- & para-Xylene              | 108-38-3                       | 0.5           | mg/kg | <0.5              | 2 mg/kg                               | 94.1               | 60       | 120        |
|                                        | 106-42-3                       |               |       |                   |                                       |                    |          |            |
| P080: ortho-Xylene                     | 95-47-6                        | 0.5           | mg/kg | <0.5              | 1 mg/kg                               | 97.3               | 60       | 120        |
| P080: Naphthalene                      | 91-20-3                        | 1             | mg/kg | <1                | 1 mg/kg                               | 99.0               | 62       | 138        |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL     |                                 | Matrix Spike (MS) Report |            |               |                  |            |           |
|----------------------|---------------------------------|--------------------------|------------|---------------|------------------|------------|-----------|
|                      |                                 |                          |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                | Method: Compound         | CAS Number | Concentration | MS               | Low        | High      |
| EG005T: Total Meta   | als by ICP-AES (QCLot: 3873890) |                          |            |               |                  |            |           |
| ES1506676-056        | Anonymous                       | EG005T: Arsenic          | 7440-38-2  | 50 mg/kg      | 101              | 70         | 130       |

 Page
 : 9 of 11

 Work Order
 : ES1506748

 Client
 : SMEC AUSTRALIA PTY LTD

 Project
 : 3002402 ISABELLA WEIR



| ub-Matrix: SOIL           |                                              |                            |            | M             | atrix Spike (MS) Report |            |           |
|---------------------------|----------------------------------------------|----------------------------|------------|---------------|-------------------------|------------|-----------|
|                           |                                              |                            |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID       | Client sample ID                             | Method: Compound           | CAS Number | Concentration | MS                      | Low        | High      |
| G005T: Total Met          | als by ICP-AES (QCLot: 3873890) - continued  |                            |            |               |                         |            |           |
| ES1506676-056             | Anonymous                                    | EG005T: Cadmium            | 7440-43-9  | 50 mg/kg      | 101                     | 70         | 130       |
|                           |                                              | EG005T: Chromium           | 7440-47-3  | 50 mg/kg      | 106                     | 70         | 130       |
|                           |                                              | EG005T: Copper             | 7440-50-8  | 250 mg/kg     | 104                     | 70         | 130       |
|                           |                                              | EG005T: Lead               | 7439-92-1  | 250 mg/kg     | 99.9                    | 70         | 130       |
|                           |                                              | EG005T: Nickel             | 7440-02-0  | 50 mg/kg      | 104                     | 70         | 130       |
|                           |                                              | EG005T: Zinc               | 7440-66-6  | 250 mg/kg     | 100                     | 70         | 130       |
| G035T: Total Re           | coverable Mercury by FIMS (QCLot: 3873891)   |                            |            |               |                         |            |           |
| S1506676-056              | Anonymous                                    | EG035T: Mercury            | 7439-97-6  | 5 mg/kg       | 93.6                    | 70         | 130       |
| P068A: Organocl           | nlorine Pesticides (OC) (QCLot: 3873862)     |                            |            |               |                         |            |           |
| ES1506905-001             | Anonymous                                    | EP068: gamma-BHC           | 58-89-9    | 0.5 mg/kg     | 81.5                    | 70         | 130       |
|                           |                                              | EP068: Heptachlor          | 76-44-8    | 0.5 mg/kg     | 90.1                    | 70         | 130       |
|                           |                                              | EP068: Aldrin              | 309-00-2   | 0.5 mg/kg     | 87.1                    | 70         | 130       |
|                           |                                              | EP068: Dieldrin            | 60-57-1    | 0.5 mg/kg     | 82.7                    | 70         | 130       |
|                           |                                              | EP068: Endrin              | 72-20-8    | 2 mg/kg       | 90.4                    | 70         | 130       |
|                           |                                              | EP068: 4.4`-DDT            | 50-29-3    | 2 mg/kg       | 88.5                    | 70         | 130       |
| P068B. Organon            | nosphorus Pesticides (OP) (QCLot: 3873862)   |                            |            |               |                         |            |           |
| S1506905-001              | Anonymous                                    | EP068: Diazinon            | 333-41-5   | 0.5 mg/kg     | 107                     | 70         | 130       |
|                           |                                              | EP068: Chlorpyrifos-methyl | 5598-13-0  | 0.5 mg/kg     | 97.5                    | 70         | 130       |
|                           |                                              | EP068: Pirimphos-ethyl     | 23505-41-1 | 0.5 mg/kg     | 90.6                    | 70         | 130       |
|                           |                                              | EP068: Bromophos-ethyl     | 4824-78-6  | 0.5 mg/kg     | 103                     | 70         | 130       |
|                           |                                              | EP068: Prothiofos          | 34643-46-4 | 0.5 mg/kg     | 103                     | 70         | 130       |
| P080/071: Total P         | Petroleum Hydrocarbons (QCLot: 3871489)      |                            |            |               |                         |            |           |
| S1506658-001              | Anonymous                                    | EP080: C6 - C9 Fraction    |            | 32.5 mg/kg    | 96.4                    | 70         | 130       |
|                           |                                              | EP080. C0 - C9 Flaction    |            | 52.5 mg/kg    | 30.4                    | 10         | 150       |
|                           | etroleum Hydrocarbons (QCLot: 3873863)       |                            |            |               | 1                       |            |           |
| S1506905-001              | Anonymous                                    | EP071: C10 - C14 Fraction  |            | 523 mg/kg     | 96.4                    | 73         | 137       |
|                           |                                              | EP071: C15 - C28 Fraction  |            | 2319 mg/kg    | 105                     | 53         | 131       |
|                           |                                              | EP071: C29 - C36 Fraction  |            | 1714 mg/kg    | 125                     | 52         | 132       |
| P080/071: Total F         | Recoverable Hydrocarbons - NEPM 2013 Fractic | ons (QCLot: 3871489)       |            |               |                         |            |           |
| ES1506658-001             | Anonymous                                    | EP080: C6 - C10 Fraction   | C6_C10     | 37.5 mg/kg    | 96.7                    | 70         | 130       |
| P080/071: To <u>tal F</u> | Recoverable Hydrocarbons - NEPM 2013 Fractic | ons (QCLot: 3873863)       |            |               |                         |            |           |
| S1506905-001              | Anonymous                                    | EP071: >C10 - C16 Fraction | >C10_C16   | 860 mg/kg     | 94.6                    | 73         | 137       |
|                           |                                              | EP071: >C16 - C34 Fraction |            | 3223 mg/kg    | 124                     | 53         | 131       |
|                           |                                              | EP071: >C34 - C40 Fraction |            | 1058 mg/kg    | 124                     | 52         | 132       |
|                           | CLot: 3871489)                               |                            |            |               |                         |            |           |
|                           |                                              |                            |            |               |                         |            |           |

# Page : 10 of 11 Work Order : ES1506748 Client : SMEC AUSTRALIA PTY LTD Project : 3002402 ISABELLA WEIR



| Sub-Matrix: SOIL                          | Aatrix: SOIL               |            |               |                  |            |           |
|-------------------------------------------|----------------------------|------------|---------------|------------------|------------|-----------|
|                                           |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID Client sample ID     | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |
| EP080: BTEXN (QCLot: 3871489) - continued |                            |            |               |                  |            |           |
| ES1506658-001 Anonymous                   | EP080: Toluene             | 108-88-3   | 2.5 mg/kg     | 87.0             | 70         | 130       |
|                                           | EP080: Ethylbenzene        | 100-41-4   | 2.5 mg/kg     | 85.2             | 70         | 130       |
|                                           | EP080: meta- & para-Xylene | 108-38-3   | 2.5 mg/kg     | 83.0             | 70         | 130       |
|                                           |                            | 106-42-3   |               |                  |            |           |
|                                           | EP080: ortho-Xylene        | 95-47-6    | 2.5 mg/kg     | 88.5             | 70         | 130       |
|                                           | EP080: Naphthalene         | 91-20-3    | 2.5 mg/kg     | 88.4             | 70         | 130       |

#### Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL    |                              |                                      |            |               | Matrix Spike (I | //S) and Matrix Sp | ike Duplicate | (MSD) Repor | t     |              |
|---------------------|------------------------------|--------------------------------------|------------|---------------|-----------------|--------------------|---------------|-------------|-------|--------------|
|                     |                              |                                      |            | Spike         | Spike Re        | covery (%)         | Recovery      | Limits (%)  | RPI   | Ds (%)       |
| aboratory sample ID | Client sample ID             | Method: Compound                     | CAS Number | Concentration | MS              | MSD                | Low           | High        | Value | Control Limi |
| EP080/071: Total P  | etroleum Hydrocarbons (QC    | Lot: 3871489)                        |            |               |                 |                    |               |             |       |              |
| ES1506658-001       | Anonymous                    | EP080: C6 - C9 Fraction              |            | 32.5 mg/kg    | 96.4            |                    | 70            | 130         |       |              |
| EP080/071: Total R  | ecoverable Hydrocarbons - N  | NEPM 2013 Fractions (QCLot: 3871489) |            |               |                 |                    |               |             |       |              |
| ES1506658-001       | Anonymous                    | EP080: C6 - C10 Fraction             | C6_C10     | 37.5 mg/kg    | 96.7            |                    | 70            | 130         |       |              |
| EP080: BTEXN (Q     | CLot: 3871489)               |                                      |            |               |                 |                    |               |             |       |              |
| ES1506658-001       | Anonymous                    | EP080: Benzene                       | 71-43-2    | 2.5 mg/kg     | 83.2            |                    | 70            | 130         |       |              |
|                     |                              | EP080: Toluene                       | 108-88-3   | 2.5 mg/kg     | 87.0            |                    | 70            | 130         |       |              |
|                     |                              | EP080: Ethylbenzene                  | 100-41-4   | 2.5 mg/kg     | 85.2            |                    | 70            | 130         |       |              |
|                     |                              | EP080: meta- & para-Xylene           | 108-38-3   | 2.5 mg/kg     | 83.0            |                    | 70            | 130         |       |              |
|                     |                              |                                      | 106-42-3   |               |                 |                    |               |             |       |              |
|                     |                              | EP080: ortho-Xylene                  | 95-47-6    | 2.5 mg/kg     | 88.5            |                    | 70            | 130         |       |              |
|                     |                              | EP080: Naphthalene                   | 91-20-3    | 2.5 mg/kg     | 88.4            |                    | 70            | 130         |       |              |
| EP068A: Organoch    | nlorine Pesticides (OC) (QCL | ot: 3873862)                         |            |               |                 |                    |               |             |       |              |
| ES1506905-001       | Anonymous                    | EP068: gamma-BHC                     | 58-89-9    | 0.5 mg/kg     | 81.5            |                    | 70            | 130         |       |              |
|                     |                              | EP068: Heptachlor                    | 76-44-8    | 0.5 mg/kg     | 90.1            |                    | 70            | 130         |       |              |
|                     |                              | EP068: Aldrin                        | 309-00-2   | 0.5 mg/kg     | 87.1            |                    | 70            | 130         |       |              |
|                     |                              | EP068: Dieldrin                      | 60-57-1    | 0.5 mg/kg     | 82.7            |                    | 70            | 130         |       |              |
|                     |                              | EP068: Endrin                        | 72-20-8    | 2 mg/kg       | 90.4            |                    | 70            | 130         |       |              |
|                     |                              | EP068: 4.4`-DDT                      | 50-29-3    | 2 mg/kg       | 88.5            |                    | 70            | 130         |       |              |
| P068B: Organoph     | osphorus Pesticides (OP) (0  | QCLot: 3873862)                      |            |               |                 |                    | 1             |             |       |              |
| ES1506905-001       | Anonymous                    | EP068: Diazinon                      | 333-41-5   | 0.5 mg/kg     | 107             |                    | 70            | 130         |       |              |

Page

#### : 11 of 11 ES1506748 Work Order SMEC AUSTRALIA PTY LTD Client Project 3002402 ISABELLA WEIR



| Sub-Matrix: SOIL    |                             |                                      |            |               | Matrix Spike ( | MS) and Matrix S | pike Duplicate | e (MSD) Repor | t     |             |
|---------------------|-----------------------------|--------------------------------------|------------|---------------|----------------|------------------|----------------|---------------|-------|-------------|
|                     |                             |                                      |            | Spike         | Spike Re       | covery (%)       | Recovery       | Limits (%)    | RP    | PDs (%)     |
| aboratory sample ID | Client sample ID            | Method: Compound                     | CAS Number | Concentration | MS             | MSD              | Low            | High          | Value | Control Lin |
| EP068B: Organoph    | nosphorus Pesticides (OP)(  | QCLot: 3873862) - continued          |            |               |                |                  |                |               |       |             |
| ES1506905-001       | Anonymous                   | EP068: Chlorpyrifos-methyl           | 5598-13-0  | 0.5 mg/kg     | 97.5           |                  | 70             | 130           |       |             |
|                     |                             | EP068: Pirimphos-ethyl               | 23505-41-1 | 0.5 mg/kg     | 90.6           |                  | 70             | 130           |       |             |
|                     |                             | EP068: Bromophos-ethyl               | 4824-78-6  | 0.5 mg/kg     | 103            |                  | 70             | 130           |       |             |
|                     |                             | EP068: Prothiofos                    | 34643-46-4 | 0.5 mg/kg     | 103            |                  | 70             | 130           |       |             |
| EP080/071: Total P  | etroleum Hydrocarbons (QC   | CLot: 3873863)                       |            |               |                |                  |                |               |       |             |
| ES1506905-001       | Anonymous                   | EP071: C10 - C14 Fraction            |            | 523 mg/kg     | 96.4           |                  | 73             | 137           |       |             |
|                     |                             | EP071: C15 - C28 Fraction            |            | 2319 mg/kg    | 105            |                  | 53             | 131           |       |             |
|                     |                             | EP071: C29 - C36 Fraction            |            | 1714 mg/kg    | 125            |                  | 52             | 132           |       |             |
| EP080/071: Total R  | ecoverable Hvdrocarbons - I | NEPM 2013 Fractions (QCLot: 3873863) |            |               |                |                  |                |               |       |             |
| ES1506905-001       | Anonymous                   | EP071: >C10 - C16 Fraction           | >C10_C16   | 860 mg/kg     | 94.6           |                  | 73             | 137           |       |             |
|                     |                             | EP071: >C16 - C34 Fraction           |            | 3223 mg/kg    | 124            |                  | 53             | 131           |       |             |
|                     |                             | EP071: >C34 - C40 Fraction           |            | 1058 mg/kg    | 124            |                  | 52             | 132           |       |             |
| EG005T: Total Met   | als by ICP-AES (QCLot: 387  | 3890)                                |            |               |                |                  |                | 1             |       |             |
| ES1506676-056       | Anonymous                   | EG005T: Arsenic                      | 7440-38-2  | 50 mg/kg      | 101            |                  | 70             | 130           |       |             |
|                     |                             | EG005T: Cadmium                      | 7440-43-9  | 50 mg/kg      | 101            |                  | 70             | 130           |       |             |
|                     |                             | EG005T: Chromium                     | 7440-47-3  | 50 mg/kg      | 106            |                  | 70             | 130           |       |             |
|                     |                             | EG005T: Copper                       | 7440-50-8  | 250 mg/kg     | 104            |                  | 70             | 130           |       |             |
|                     |                             | EG005T: Lead                         | 7439-92-1  | 250 mg/kg     | 99.9           |                  | 70             | 130           |       |             |
|                     |                             | EG005T: Nickel                       | 7440-02-0  | 50 mg/kg      | 104            |                  | 70             | 130           |       |             |
|                     |                             | EG005T: Zinc                         | 7440-66-6  | 250 mg/kg     | 100            |                  | 70             | 130           |       |             |
| G035T: Total Reg    | coverable Mercury by FIMS(  | (QCL ot: 3873891)                    |            |               |                |                  |                |               |       |             |
| ES1506676-056       | Anonymous                   | EG035T: Mercury                      | 7439-97-6  | 5 mg/kg       | 93.6           |                  | 70             | 130           |       |             |
|                     |                             |                                      |            |               |                |                  |                |               |       |             |



|              | CERT                                  | <b>IFICATE OF ANALYSIS</b> |                                                       |
|--------------|---------------------------------------|----------------------------|-------------------------------------------------------|
| Work Order   | ES1506748                             | Page                       | : 1 of 6                                              |
| Client       | : SMEC AUSTRALIA PTY LTD              | Laboratory                 | : Environmental Division Sydney                       |
| Contact      | :Schedule 2.2 (a)(ii)                 | Contact                    | : Client Services                                     |
| Address      | : P O BOX 1654                        | Address                    | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | FYSHWICK ACT, AUSTRALIA 2609          |                            |                                                       |
| E-mail       | :Schedule 2.2 (a)(ii)                 | E-mail                     | : sydney@alsglobal.com                                |
| Felephone    | : + <mark>Schedule 2.2 (a)(ii)</mark> | Telephone                  | : +61-2-8784 8555                                     |
| acsimile     | Schedule 2.2 (a)(ii)                  | Facsimile                  | : +61-2-8784 8500                                     |
| Project      | : 3002402 ISABELLA WEIR               | QC Level                   | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |
| Order number | :                                     |                            |                                                       |
| C-O-C number | : 0338 & 0342                         | Date Samples Received      | : 23-MAR-2015                                         |
| Sampler      | : ET                                  | Issue Date                 | : 30-MAR-2015                                         |
| Site         | :                                     |                            |                                                       |
|              |                                       | No. of samples received    | : 1                                                   |
| Quote number | : EN/025/14                           | No. of samples analysed    | : 1                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ

WORLD RECOGNISED

• Surrogate Control Limits

# NATA Accredited Laboratory 825 Signatories Accredited for compliance with ISO/IEC 17025. Signatories ISO/IEC 17025. Signatories

| Signatories          | POSILION              | Accreditation Calegory |
|----------------------|-----------------------|------------------------|
| Schedule 2.2 (a)(ii) | Senior Spectroscopist | Sydney Inorganics      |
| Schedule 2.2 (a)(ii) | Organic Coordinator   | Sydney Organics        |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

#### Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 Page
 : 3 of 6

 Work Order
 : ES1506748

 Client
 : SMEC AUSTRALIA PTY LTD

 Project
 : 3002402 ISABELLA WEIR



# Analytical Results

| Sub-Matrix: SOIL (Matrix: SOIL)      |            | Clie        | ent sample ID  | QA4               | <br> | <br> |
|--------------------------------------|------------|-------------|----------------|-------------------|------|------|
|                                      | Cli        | ent samplii | ng date / time | 19-MAR-2015 15:00 | <br> | <br> |
| Compound                             | CAS Number | LOR         | Unit           | ES1506748-001     | <br> | <br> |
| EA055: Moisture Content              |            |             |                |                   |      |      |
| Moisture Content (dried @ 103°C)     |            | 1.0         | %              | 3.6               | <br> | <br> |
| EG005T: Total Metals by ICP-AES      |            |             |                |                   |      |      |
| Arsenic                              | 7440-38-2  | 5           | mg/kg          | <5                | <br> | <br> |
| Barium                               | 7440-39-3  | 10          | mg/kg          | 50                | <br> | <br> |
| Beryllium                            | 7440-41-7  | 1           | mg/kg          | <1                | <br> | <br> |
| Boron                                | 7440-42-8  | 50          | mg/kg          | <50               | <br> | <br> |
| Cadmium                              | 7440-43-9  | 1           | mg/kg          | <1                | <br> | <br> |
| Chromium                             | 7440-47-3  | 2           | mg/kg          | 14                | <br> | <br> |
| Cobalt                               | 7440-48-4  | 2           | mg/kg          | 5                 | <br> | <br> |
| Copper                               | 7440-50-8  | 5           | mg/kg          | <5                | <br> | <br> |
| Lead                                 | 7439-92-1  | 5           | mg/kg          | 12                | <br> | <br> |
| Manganese                            | 7439-96-5  | 5           | mg/kg          | 403               | <br> | <br> |
| Nickel                               | 7440-02-0  | 2           | mg/kg          | 3                 | <br> | <br> |
| Selenium                             | 7782-49-2  | 5           | mg/kg          | <5                | <br> | <br> |
| Vanadium                             | 7440-62-2  | 5           | mg/kg          | 33                | <br> | <br> |
| Zinc                                 | 7440-66-6  | 5           | mg/kg          | 10                | <br> | <br> |
| EG035T: Total Recoverable Mercury b  | y FIMS     |             |                |                   |      |      |
| Mercury                              | 7439-97-6  | 0.1         | mg/kg          | <0.1              | <br> | <br> |
| EP068A: Organochlorine Pesticides (C | (OC)       |             |                |                   |      |      |
| alpha-BHC                            | 319-84-6   | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| Hexachlorobenzene (HCB)              | 118-74-1   | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| beta-BHC                             | 319-85-7   | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| gamma-BHC                            | 58-89-9    | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| delta-BHC                            | 319-86-8   | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| Heptachlor                           | 76-44-8    | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| Aldrin                               | 309-00-2   | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| Heptachlor epoxide                   | 1024-57-3  | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| <sup>^</sup> Total Chlordane (sum)   |            | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| trans-Chlordane                      | 5103-74-2  | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| alpha-Endosulfan                     | 959-98-8   | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| cis-Chlordane                        | 5103-71-9  | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| Dieldrin                             | 60-57-1    | 0.05        | mg/kg          | <0.05             | <br> | <br> |
| 4.4`-DDE                             | 72-55-9    | 0.05        | mg/kg          | <0.05             | <br> | <br> |

Page: 4 of 6Work Order: ES1506748Client: SMEC AUSTRALIA PTY LTDProject: 3002402 ISABELLA WEIR



# Analytical Results

| Sub-Matrix: SOIL (Matrix: SOIL)   |                    | Clie         | ent sample ID  | QA4               | <br> | <br> |
|-----------------------------------|--------------------|--------------|----------------|-------------------|------|------|
|                                   | Ci                 | ient samplii | ng date / time | 19-MAR-2015 15:00 | <br> | <br> |
| Compound                          | CAS Number         | LOR          | Unit           | ES1506748-001     | <br> | <br> |
| EP068A: Organochlorine Pesticides | s (OC) - Continued |              |                |                   |      |      |
| Endrin                            | 72-20-8            | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| beta-Endosulfan                   | 33213-65-9         | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| ^ Endosulfan (sum)                | 115-29-7           | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| 4.4`-DDD                          | 72-54-8            | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Endrin aldehyde                   | 7421-93-4          | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Endosulfan sulfate                | 1031-07-8          | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| 4.4`-DDT                          | 50-29-3            | 0.2          | mg/kg          | <0.2              | <br> | <br> |
| Endrin ketone                     | 53494-70-5         | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Methoxychlor                      | 72-43-5            | 0.2          | mg/kg          | <0.2              | <br> | <br> |
| ^ Sum of Aldrin + Dieldrin        | 309-00-2/60-57-1   | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Sum of DDD + DDE + DDT            |                    | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| EP068B: Organophosphorus Pestic   | cides (OP)         |              |                |                   |      |      |
| Dichlorvos                        | 62-73-7            | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Demeton-S-methyl                  | 919-86-8           | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Monocrotophos                     | 6923-22-4          | 0.2          | mg/kg          | <0.2              | <br> | <br> |
| Dimethoate                        | 60-51-5            | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Diazinon                          | 333-41-5           | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Chlorpyrifos-methyl               | 5598-13-0          | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Parathion-methyl                  | 298-00-0           | 0.2          | mg/kg          | <0.2              | <br> | <br> |
| Malathion                         | 121-75-5           | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Fenthion                          | 55-38-9            | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Chlorpyrifos                      | 2921-88-2          | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Parathion                         | 56-38-2            | 0.2          | mg/kg          | <0.2              | <br> | <br> |
| Pirimphos-ethyl                   | 23505-41-1         | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Chlorfenvinphos                   | 470-90-6           | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Bromophos-ethyl                   | 4824-78-6          | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Fenamiphos                        | 22224-92-6         | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Prothiofos                        | 34643-46-4         | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Ethion                            | 563-12-2           | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Carbophenothion                   | 786-19-6           | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Azinphos Methyl                   | 86-50-0            | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| EP080/071: Total Petroleum Hydrod | carbons            |              |                |                   |      |      |
| C6 - C9 Fraction                  |                    | 10           | mg/kg          | <10               | <br> | <br> |
| C10 - C14 Fraction                |                    | 50           | mg/kg          | <50               | <br> | <br> |

## 1309

 Page
 : 5 of 6

 Work Order
 : ES1506748

 Client
 : SMEC AUSTRALIA PTY LTD

 Project
 : 3002402 ISABELLA WEIR



## Analytical Results

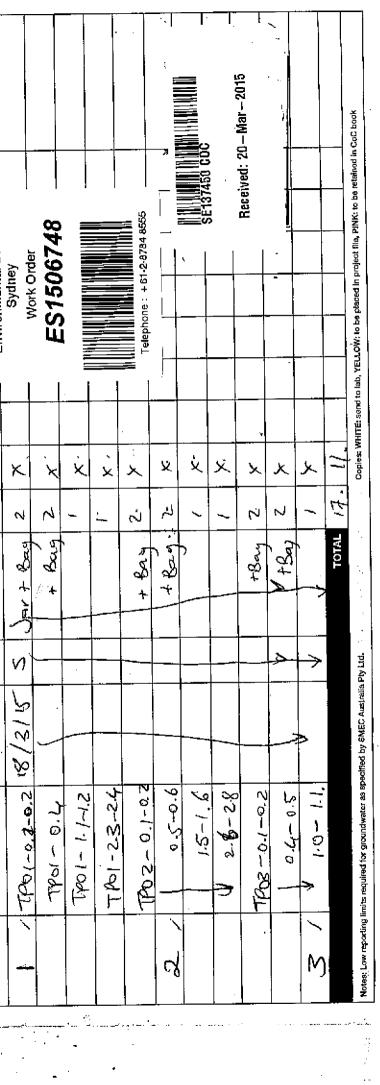
| Sub-Matrix: SOIL (Matrix: SOIL)              |                    | Clie       | ent sample ID  | QA4               | <br> | <br> |
|----------------------------------------------|--------------------|------------|----------------|-------------------|------|------|
|                                              | Cli                | ent sampli | ng date / time | 19-MAR-2015 15:00 | <br> | <br> |
| Compound                                     | CAS Number         | LOR        | Unit           | ES1506748-001     | <br> | <br> |
| EP080/071: Total Petroleum Hydroca           | rbons - Continued  |            |                |                   |      |      |
| C15 - C28 Fraction                           |                    | 100        | mg/kg          | <100              | <br> | <br> |
| C29 - C36 Fraction                           |                    | 100        | mg/kg          | <100              | <br> | <br> |
| <sup>^</sup> C10 - C36 Fraction (sum)        |                    | 50         | mg/kg          | <50               | <br> | <br> |
| EP080/071: Total Recoverable Hydrod          | carbons - NEPM 201 | 3 Fractio  | ns             |                   |      |      |
| C6 - C10 Fraction                            | C6_C10             | 10         | mg/kg          | <10               | <br> | <br> |
| C6 - C10 Fraction minus BTEX<br>(F1)         | C6_C10-BTEX        | 10         | mg/kg          | <10               | <br> | <br> |
| >C10 - C16 Fraction                          | >C10_C16           | 50         | mg/kg          | <50               | <br> | <br> |
| >C16 - C34 Fraction                          |                    | 100        | mg/kg          | <100              | <br> | <br> |
| >C34 - C40 Fraction                          |                    | 100        | mg/kg          | <100              | <br> | <br> |
| ^ >C10 - C40 Fraction (sum)                  |                    | 50         | mg/kg          | <50               | <br> | <br> |
| C10 - C16 Fraction minus Naphthalene<br>(F2) |                    | 50         | mg/kg          | <50               | <br> | <br> |
| EP080: BTEXN                                 |                    |            |                |                   |      |      |
| Benzene                                      | 71-43-2            | 0.2        | mg/kg          | <0.2              | <br> | <br> |
| Toluene                                      | 108-88-3           | 0.5        | mg/kg          | <0.5              | <br> | <br> |
| Ethylbenzene                                 | 100-41-4           | 0.5        | mg/kg          | <0.5              | <br> | <br> |
| meta- & para-Xylene                          | 108-38-3 106-42-3  | 0.5        | mg/kg          | <0.5              | <br> | <br> |
| ortho-Xylene                                 | 95-47-6            | 0.5        | mg/kg          | <0.5              | <br> | <br> |
| <sup>^</sup> Sum of BTEX                     |                    | 0.2        | mg/kg          | <0.2              | <br> | <br> |
| ^ Total Xylenes                              | 1330-20-7          | 0.5        | mg/kg          | <0.5              | <br> | <br> |
| Naphthalene                                  | 91-20-3            | 1          | mg/kg          | <1                | <br> | <br> |
| EP068S: Organochlorine Pesticide Su          |                    |            |                |                   |      |      |
| Dibromo-DDE                                  | 21655-73-2         | 0.1        | %              | 114               | <br> | <br> |
| EP068T: Organophosphorus Pesticid            |                    |            |                |                   |      |      |
| DEF                                          | 78-48-8            | 0.1        | %              | 100               | <br> | <br> |
| EP080S: TPH(V)/BTEX Surrogates               |                    |            |                |                   |      |      |
| 1.2-Dichloroethane-D4                        | 17060-07-0         | 0.1        | %              | 91.3              | <br> | <br> |
| Toluene-D8                                   | 2037-26-5          | 0.1        | %              | 89.2              | <br> | <br> |
| 4-Bromofluorobenzene                         | 460-00-4           | 0.1        | %              | 87.0              | <br> | <br> |

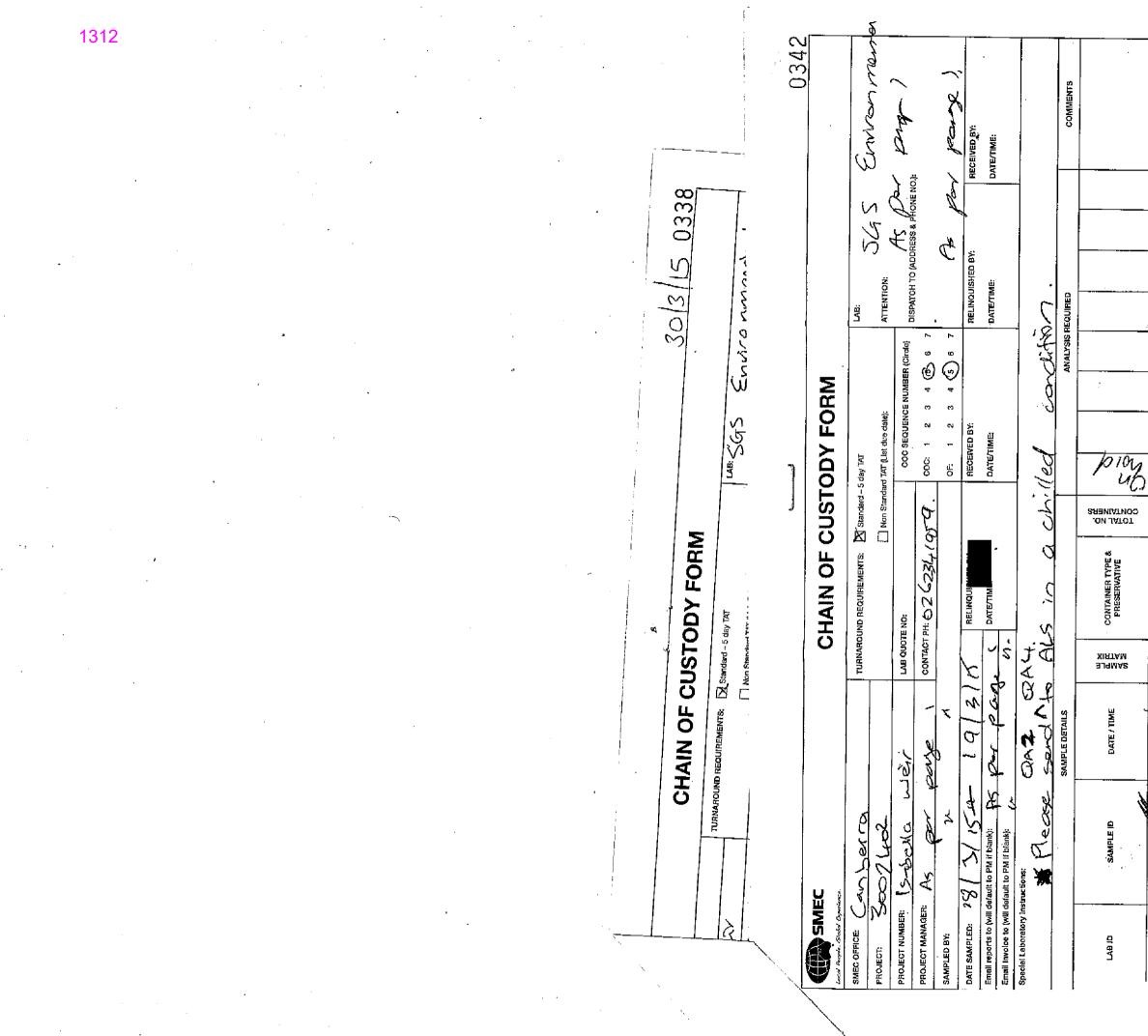
## 1310

 Page
 : 6 of 6

 Work Order
 : ES1506748

 Client
 : SMEC AUSTRALIA PTY LTD


 Project
 : 3002402 ISABELLA WEIR




### Surrogate Control Limits

| Sub-Matrix: SOIL                             |            | Recovery | Limits (%) |
|----------------------------------------------|------------|----------|------------|
| Compound                                     | CAS Number | Low      | High       |
| EP068S: Organochlorine Pesticide Surrogate   |            |          |            |
| Dibromo-DDE                                  | 21655-73-2 | 49       | 147        |
| EP068T: Organophosphorus Pesticide Surrogate |            |          |            |
| DEF                                          | 78-48-8    | 35       | 143        |
| EP080S: TPH(V)/BTEX Surrogates               |            |          |            |
| 1.2-Dichloroethane-D4                        | 17060-07-0 | 72.8     | 133.2      |
| Toluene-D8                                   | 2037-26-5  | 73.9     | 132.1      |
| 4-Bromofluorobenzene                         | 460-00-4   | 71.6     | 130.0      |

|                                       |   |   |     |   | 1     |                       |                                                                |                                                                   |                                                                   |                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|---------------------------------------|---|---|-----|---|-------|-----------------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1311                                  |   | • |     |   |       | 30315 0338            | Enviro nmenten  <br>idule 2.2 (a) (ii)                         | ing, NSW , ZOIS.                                                  | RECEIVED BY Schedule 2.2 (a)(10)<br>DATETIME:<br>20(03)(17 C 2,45 | Wariel<br>2003.18 12:30 | COMMENTS          | 、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                                       |   |   | •   |   | •     |                       | ыв: <i>SG</i> S Envir<br>аттелтол <mark>Schedule</mark>        | DISPATCH TU PUDHESS & FHUNE &<br>LUTIT (6, 37 M2<br>Alexanding, N | relinguished By:<br>Datettime:                                    | с                       | Ganuco            | mental Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sydney      |
|                                       | • |   |     |   |       | FORM                  |                                                                | E NUMBER (Circle)<br>3 4 5 6 7<br>8 4 15 6 7                      | , ·                                                               |                         | ANALYSIS REQUIRED | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                                       |   |   |     |   | · · · | CHAIN OF CUSTODY FORM | rs: 🔀 Standard - 5 day TAT<br>non Standard TAT (Ust due date): | 2 6234 000 002                                                    | 16 5                                                              | Hucher /C               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×           |
|                                       |   |   | ÷   |   |       | CHAIN OI              | TURNAROUND REQUIREMENTS:                                       | LAB QUOTE NO:<br>D 2                                              | RELSCHEdue<br>DATE/TIME:                                          | -bront                  |                   | BERVATIVE & CONTAINER TYPE & CONTAINER T | ·<br>·<br>· |
|                                       |   |   |     | • |       |                       |                                                                |                                                                   | a / <i>} // &lt;.</i><br>a / <i>} // &lt;.</i><br>a (i)           | email                   | SAMPLE DETAILS    | DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 012110      |
|                                       |   |   | ·   | • |       | U                     | anterra                                                        | Schedule                                                          | Email reports to (will default to PM if blank) Schedul            | itructions: I Low       |                   | QI ƏTMUHTE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| · · · · · · · · · · · · · · · · · · · |   |   | · · |   |       |                       | Gierary Cay                                                    |                                                                   | SAMPLED BY:                                                       | Special Laboratory Ins  |                   | LAB ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -           |
|                                       |   | • |     |   |       | <b>\</b> -            | ×                                                              | - , , , <b>, , , , , , , , , , , , , , , ,</b>                    | <b></b>                                                           | ~ <b>*</b> .            | · · · ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |





| 1                                                                                             | UK > 5 5                    | $(, ( < ) )_{-}$           | <u>.</u> | 22        | •  | ×            |                                   |               |          |    |   |  |   |      |               |          |
|-----------------------------------------------------------------------------------------------|-----------------------------|----------------------------|----------|-----------|----|--------------|-----------------------------------|---------------|----------|----|---|--|---|------|---------------|----------|
| ල<br>                                                                                         | QAL 🐇                       | ->                         | <u>م</u> | 7.1       | J  | ×            |                                   |               |          |    |   |  |   |      |               |          |
| 止                                                                                             | Frag of                     | ~                          | ~        | Bag.      | .) | ×            |                                   |               |          | +. |   |  |   | 2010 | Please weight | B        |
|                                                                                               | 2                           |                            |          | p         |    |              |                                   |               |          |    |   |  |   |      | 5             |          |
|                                                                                               |                             |                            |          |           |    |              |                                   |               | <u> </u> | -  |   |  |   |      |               |          |
|                                                                                               |                             |                            |          |           |    |              |                                   |               |          |    |   |  |   |      |               |          |
|                                                                                               |                             |                            |          |           |    |              |                                   |               | <u> </u> |    | . |  |   |      |               |          |
|                                                                                               |                             |                            |          |           |    |              |                                   | •             |          |    |   |  |   |      |               |          |
|                                                                                               |                             |                            |          |           |    |              |                                   |               |          |    |   |  |   |      |               |          |
|                                                                                               |                             |                            |          |           |    |              |                                   |               |          |    |   |  |   |      |               | 1        |
|                                                                                               |                             |                            |          |           |    |              |                                   |               |          |    |   |  |   |      |               |          |
|                                                                                               |                             |                            |          | TOTAL 3 - | 5  | h            |                                   |               |          |    |   |  |   |      | :             | <b>T</b> |
| Notes: Low reporting limits required for groundwater as specified by SMEC Australia Ptv I.+4. | hed for groundwater as spec | citied by SMEC Australia P | NLM.     |           |    | Control With | Conton Withtin and a to be warmed | C 1 1 1 1 1 1 |          | :  | : |  | i |      | -             | T        |

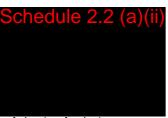
÷-





| CLIENT DETAILS |                                                                              | LABORATORY DETAI | ILS                                          |
|----------------|------------------------------------------------------------------------------|------------------|----------------------------------------------|
| Contact        | Schedule 2.2 (a)(ii)                                                         | Manager          | Schedule 2.2 (a)(ii)                         |
| Client         | SMEC Australia Pty Ltd - ACT                                                 | Laboratory       | SGS Alexandria Environmental                 |
| Address        | Sun Micro Building<br>Suite 2, Level 1<br>243 Northbourne Avenue<br>ACT 2602 | Address          | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone      | Schedule 2.2 (a)(ii)                                                         | Telephone        | Schedule 2.2 (a)(ii)                         |
| Facsimile      | Schedule 2.2 (a)(ii)                                                         | Facsimile        | Schedule 2.2 (a)(ii)                         |
| Email          | Schedule 2.2 (a)(ii)                                                         | Email            | au.environmental.sydney@sgs.com              |
| Project        | 3002402-Isabella Weir-Additional Testing                                     | SGS Reference    | SE137450A R0                                 |
| Order Number   | 03380342                                                                     | Report Number    | 0000111868                                   |
| Samples        | 2                                                                            | Date Reported    | 03 Jun 2015                                  |
|                |                                                                              | Date Received    | 20 Mar 2015                                  |

COMMENTS ·


Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier

SIGNATORIES -



Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 400 **f** +61 2 8594 0499

Member of the SGS Group

www.au.sgs.com



| RESULTS -               |                     |        |                             |                  |                      |           |
|-------------------------|---------------------|--------|-----------------------------|------------------|----------------------|-----------|
| Fibre Identificat       | tion in soil        |        |                             |                  | Method               | AN602     |
| Laboratory<br>Reference | Client<br>Reference | Matrix | Sample<br>Description       | Date Sampled     | Fibre Identification | Est.%w/w* |
| SE137450A.013           | TP07_0.5            | Soil   | 90g<br>Clay,Sand,Rocl<br>s  | 18 Mar 2015<br>K | No Asbestos Found    | <0.01     |
| SE137450A.014           | TP07_1.8-2.0        | Soil   | 104g<br>Clay,Sand,Rocl<br>s | 18 Mar 2015<br>K | No Asbestos Found    | <0.01     |



## **METHOD SUMMARY**

| METHOD | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN602  | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned. |
| AN602  | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AN602  | AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."                                                                                                                                                                                                                                                                                                 |
| AN602  | The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | <ul> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>                                                                                                                                                                                            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

FOOTNOTES

| Amosite     | - | Brown Asbestos             | NA  | - | Not Analysed                                        |
|-------------|---|----------------------------|-----|---|-----------------------------------------------------|
| Chrysotile  | - | White Asbestos             | LNR | - | Listed, Not Required                                |
| Crocidolite | - | Blue Asbestos              | *   | - | Not Accredited                                      |
| Amphiboles  | - | Amosite and/or Crocidolite | **  | - | Indicative data, theoretical holding time exceeded. |

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarized light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarized light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarized light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.



## STATEMENT OF QA/QC PERFORMANCE

| CLIENT DETAILS |                                                                              | LABORATORY DETAI | ILS                                          |
|----------------|------------------------------------------------------------------------------|------------------|----------------------------------------------|
| Contact        | Schedule 2.2 (a)(ii)                                                         | Manager          | Schedule 2.2 (a)(ii)                         |
| Client         | SMEC Australia Pty Ltd - ACT                                                 | Laboratory       | SGS Alexandria Environmental                 |
| Address        | Sun Micro Building<br>Suite 2, Level 1<br>243 Northbourne Avenue<br>ACT 2602 | Address          | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone      | Schedule 2.2 (a)(ii)                                                         | Telephone        | Schedule 2.2 (a)(ii)                         |
| Facsimile      | Schedule 2.2 (a)(ii)                                                         | Facsimile        | Schedule 2.2 (a)(ii)                         |
| Email          | Schedule 2.2 (a)(ii)                                                         | Email            | au.environmental.sydney@sgs.com              |
| Project        | 3002402 - Isabella Weir                                                      | SGS Reference    | SE137450 R0                                  |
| Order Number   | 03380342                                                                     | Report Number    | 0000106322                                   |
| Samples        | 12                                                                           | Date Reported    | 27 Mar 2015                                  |

COMMENTS \_

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

#### All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

1 item

| Sample counts by matrix                | 11 Soils, 1 Material | Type of documentation received  | COC      |  |
|----------------------------------------|----------------------|---------------------------------|----------|--|
| Date documentation received            | 20/3/2015            | Samples received in good order  | Yes      |  |
| Samples received without headspace     | Yes                  | Sample temperature upon receipt | 3.4°C    |  |
| Sample container provider              | ALS                  | Turnaround time requested       | Standard |  |
| Samples received in correct containers | Yes                  | Sufficient sample for analysis  | Yes      |  |
| Sample cooling method                  | Ice Bricks           | Samples clearly labelled        | Yes      |  |
| Complete documentation received        | Yes                  | Number of eskies/boxes received |          |  |

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

| Sample Name                                                                                                 | Sample No.   | QC Ref                         | Sampled                               | Received                               | Extraction Due                               | Extracted                               | Analysis Due   | Analysed                                      |
|-------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------|----------------|-----------------------------------------------|
| Frag 01                                                                                                     | SE137450.012 | LB074580                       | 19 Mar 2015                           | 20 Mar 2015                            | 18 Mar 2016                                  | 26 Mar 2015                             | 18 Mar 2016    | 27 Mar 2015                                   |
|                                                                                                             |              |                                |                                       |                                        |                                              |                                         |                |                                               |
| bre Identification in soil                                                                                  |              |                                |                                       |                                        |                                              |                                         | Method:        | ME-(AU)-[ENV]AN                               |
| Sample Name                                                                                                 | Sample No.   | QC Ref                         | Sampled                               | Received                               | Extraction Due                               | Extracted                               | Analysis Due   | Analysed                                      |
| P01_0.1-0.2                                                                                                 | SE137450.001 | LB074570                       | 18 Mar 2015                           | 20 Mar 2015                            | 17 Mar 2016                                  | 26 Mar 2015                             | 17 Mar 2016    | 27 Mar 2015                                   |
| P02_0.5-0.6                                                                                                 | SE137450.002 | LB074570                       | 18 Mar 2015                           | 20 Mar 2015                            | 17 Mar 2016                                  | 26 Mar 2015                             | 17 Mar 2016    | 27 Mar 2015                                   |
| FP03_1.0-1.1                                                                                                | SE137450.003 | LB074570                       | 18 Mar 2015                           | 20 Mar 2015                            | 17 Mar 2016                                  | 26 Mar 2015                             | 17 Mar 2016    | 27 Mar 2015                                   |
| FP04_0.1-0.2                                                                                                | SE137450.004 | LB074570                       | 18 Mar 2015                           | 20 Mar 2015                            | 17 Mar 2016                                  | 26 Mar 2015                             | 17 Mar 2016    | 27 Mar 2015                                   |
| P05_2.0-2.2                                                                                                 | SE137450.005 | LB074570                       | 18 Mar 2015                           | 20 Mar 2015                            | 17 Mar 2016                                  | 26 Mar 2015                             | 17 Mar 2016    | 27 Mar 2015                                   |
| FP06_3.0-3.1                                                                                                | SE137450.006 | LB074570                       | 18 Mar 2015                           | 20 Mar 2015                            | 17 Mar 2016                                  | 26 Mar 2015                             | 17 Mar 2016    | 27 Mar 2015                                   |
| FP07_1.0-1.2                                                                                                | SE137450.007 | LB074570                       | 19 Mar 2015                           | 20 Mar 2015                            | 18 Mar 2016                                  | 26 Mar 2015                             | 18 Mar 2016    | 27 Mar 2015                                   |
| <br>TP08_1.1-1.2                                                                                            | SE137450.008 | LB074570                       | 19 Mar 2015                           | 20 Mar 2015                            | 18 Mar 2016                                  | 26 Mar 2015                             | 18 Mar 2016    | 27 Mar 2015                                   |
| <br>TP09_0.4-0.5                                                                                            | SE137450.009 | LB074570                       | 19 Mar 2015                           | 20 Mar 2015                            | 18 Mar 2016                                  | 26 Mar 2015                             | 18 Mar 2016    | 27 Mar 2015                                   |
| TP10_0.1-0.2                                                                                                | SE137450.010 | LB074570                       | 19 Mar 2015                           | 20 Mar 2015                            | 18 Mar 2016                                  | 26 Mar 2015                             | 18 Mar 2016    | 27 Mar 2015                                   |
| lercury in Soil                                                                                             |              |                                |                                       |                                        |                                              |                                         |                | ME-(AU)-[ENV]AN                               |
|                                                                                                             | Comple No.   | 00 84                          | Compled                               | Dessived                               | Extraction Due                               | Extracted                               |                |                                               |
| Sample Name                                                                                                 | Sample No.   | QC Ref                         | Sampled                               | Received                               | Extraction Due                               | Extracted                               | Analysis Due   | Analysed                                      |
| TP01_0.1-0.2                                                                                                | SE137450.001 | LB074476                       | 18 Mar 2015                           | 20 Mar 2015                            | 15 Apr 2015                                  | 25 Mar 2015                             | 15 Apr 2015    | 27 Mar 2015                                   |
| TP02_0.5-0.6                                                                                                | SE137450.002 | LB074476                       | 18 Mar 2015                           | 20 Mar 2015                            | 15 Apr 2015                                  | 25 Mar 2015                             | 15 Apr 2015    | 27 Mar 2015                                   |
| ГР03_1.0-1.1                                                                                                | SE137450.003 | LB074476                       | 18 Mar 2015                           | 20 Mar 2015                            | 15 Apr 2015                                  | 25 Mar 2015                             | 15 Apr 2015    | 27 Mar 2015                                   |
| FP04_0.1-0.2                                                                                                | SE137450.004 | LB074476                       | 18 Mar 2015                           | 20 Mar 2015                            | 15 Apr 2015                                  | 25 Mar 2015                             | 15 Apr 2015    | 27 Mar 2015                                   |
| P05_2.0-2.2                                                                                                 | SE137450.005 | LB074476                       | 18 Mar 2015                           | 20 Mar 2015                            | 15 Apr 2015                                  | 25 Mar 2015                             | 15 Apr 2015    | 27 Mar 2015                                   |
| FP06_3.0-3.1                                                                                                | SE137450.006 | LB074476                       | 18 Mar 2015                           | 20 Mar 2015                            | 15 Apr 2015                                  | 25 Mar 2015                             | 15 Apr 2015    | 27 Mar 2015                                   |
| ГР07_1.0-1.2                                                                                                | SE137450.007 | LB074476                       | 19 Mar 2015                           | 20 Mar 2015                            | 16 Apr 2015                                  | 25 Mar 2015                             | 16 Apr 2015    | 27 Mar 2015                                   |
| P08_1.1-1.2                                                                                                 | SE137450.008 | LB074476                       | 19 Mar 2015                           | 20 Mar 2015                            | 16 Apr 2015                                  | 25 Mar 2015                             | 16 Apr 2015    | 27 Mar 2015                                   |
| P09_0.4-0.5                                                                                                 | SE137450.009 | LB074476                       | 19 Mar 2015                           | 20 Mar 2015                            | 16 Apr 2015                                  | 25 Mar 2015                             | 16 Apr 2015    | 27 Mar 2015                                   |
| P10_0.1-0.2                                                                                                 | SE137450.010 | LB074476                       | 19 Mar 2015                           | 20 Mar 2015                            | 16 Apr 2015                                  | 25 Mar 2015                             | 16 Apr 2015    | 27 Mar 2015                                   |
| QA1                                                                                                         | SE137450.011 | LB074476                       | 19 Mar 2015                           | 20 Mar 2015                            | 16 Apr 2015                                  | 25 Mar 2015                             | 16 Apr 2015    | 27 Mar 2015                                   |
| loisture Content                                                                                            |              |                                |                                       |                                        |                                              |                                         | Method:        | ME-(AU)-[ENV]AN                               |
| Sample Name                                                                                                 | Sample No.   | QC Ref                         | Sampled                               | Received                               | Extraction Due                               | Extracted                               | Analysis Due   | Analysed                                      |
| ГР01_0.1-0.2                                                                                                | SE137450.001 | LB074485                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| FP02_0.5-0.6                                                                                                | SE137450.002 | LB074485                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| FP03_1.0-1.1                                                                                                | SE137450.003 | LB074485                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| FP04_0.1-0.2                                                                                                | SE137450.004 | LB074485                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| FP05_2.0-2.2                                                                                                | SE137450.005 | LB074485                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| <br>TP06_3.0-3.1                                                                                            | SE137450.006 | LB074485                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| TP07_1.0-1.2                                                                                                | SE137450.007 | LB074485                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| TP08_1.1-1.2                                                                                                | SE137450.008 | LB074485                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| TP09_0.4-0.5                                                                                                | SE137450.009 | LB074485                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| TP10_0.1-0.2                                                                                                | SE137450.010 | LB074485                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
| QA1                                                                                                         | SE137450.011 | LB074485                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 25 Mar 2015                             | 30 Mar 2015    | 26 Mar 2015                                   |
|                                                                                                             | 02101100.011 | 25011100                       | To find 2010                          | 201101 2010                            | 0274712010                                   | 20 Mai 2010                             |                | )-IENVIAN400/AN                               |
| C Pesticides in Soil                                                                                        |              |                                |                                       |                                        |                                              | _                                       | •              | <b>, , , , , , , , , , , , , , , , , , , </b> |
| Sample Name                                                                                                 | Sample No.   | QC Ref                         | Sampled                               | Received                               | Extraction Due                               | Extracted                               | Analysis Due   | Analysed                                      |
| FP01_0.1-0.2                                                                                                | SE137450.001 | LB074380                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| FP02_0.5-0.6                                                                                                | SE137450.002 | LB074380                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| ГР03_1.0-1.1                                                                                                | SE137450.003 | LB074380                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| FP04_0.1-0.2                                                                                                | SE137450.004 | LB074380                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| FP05_2.0-2.2                                                                                                | SE137450.005 | LB074380                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| FP06_3.0-3.1                                                                                                | SE137450.006 | LB074380                       | 18 Mar 2015                           | 20 Mar 2015                            | 01 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| FP07_1.0-1.2                                                                                                | SE137450.007 | LB074380                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| FP08_1.1-1.2                                                                                                | SE137450.008 | LB074380                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
|                                                                                                             | SE137450.009 | LB074380                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| P09_0.4-0.5                                                                                                 | SE137450.010 | LB074380                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
|                                                                                                             |              | LB074380                       | 19 Mar 2015                           | 20 Mar 2015                            | 02 Apr 2015                                  | 24 Mar 2015                             | 03 May 2015    | 27 Mar 2015                                   |
| FP10_0.1-0.2                                                                                                | SE137450.011 |                                |                                       |                                        |                                              |                                         | Method: ME-(AU | )-[ENV]AN400/AN                               |
| TP10_0.1-0.2<br>QA1                                                                                         | SE137450.011 |                                |                                       |                                        |                                              |                                         |                |                                               |
| IP10_0.1-0.2<br>QA1<br><b>P Pesticides in Soil</b>                                                          |              | QC Ref                         | Sampled                               | Received                               | Extraction Due                               | Extracted                               | -              | Analysed                                      |
| IP10_0.1-0.2<br>QA1<br>IP Pesticides in Soil<br>Sample Name                                                 | Sample No.   | QC Ref                         | Sampled                               | Received                               | Extraction Due                               | Extracted<br>24 Mar 2015                | Analysis Due   | Analysed                                      |
| IP09_0.4-0.5<br>IP10_0.1-0.2<br>QA1<br>IP Pesticides in Soil<br>Sample Name<br>IP01_0.1-0.2<br>IP02_0.5-0.6 |              | QC Ref<br>LB074380<br>LB074380 | Sampled<br>18 Mar 2015<br>18 Mar 2015 | Received<br>20 Mar 2015<br>20 Mar 2015 | Extraction Due<br>01 Apr 2015<br>01 Apr 2015 | Extracted<br>24 Mar 2015<br>24 Mar 2015 | -              | Analysed<br>27 Mar 2015<br>27 Mar 2015        |



## HOLDING TIME SUMMARY

Method: ME-(AU)-IENVIAN040/AN320

Method: ME-(AU)-IENVIAN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### OP Pesticides in Soil (continued)

| OP Pesticides in Soil (cor | ntinued)     |          |             |             |                |             | Method: ME-(AU | )-[ENV]AN400/AN42 |
|----------------------------|--------------|----------|-------------|-------------|----------------|-------------|----------------|-------------------|
| Sample Name                | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed          |
| TP03_1.0-1.1               | SE137450.003 | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| TP04_0.1-0.2               | SE137450.004 | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| TP05_2.0-2.2               | SE137450.005 | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| TP06_3.0-3.1               | SE137450.006 | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| TP07_1.0-1.2               | SE137450.007 | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| TP08_1.1-1.2               | SE137450.008 | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| TP09_0.4-0.5               | SE137450.009 | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| TP10_0.1-0.2               | SE137450.010 | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |
| QA1                        | SE137450.011 | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015    | 27 Mar 2015       |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil

| PAH (Polynuclear Aromat | AH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 |          |             |             |                |             |              |             |  |
|-------------------------|---------------------------------------------------------------------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|--|
| Sample Name             | Sample No.                                                                | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |  |
| TP01_0.1-0.2            | SE137450.001                                                              | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP02_0.5-0.6            | SE137450.002                                                              | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP03_1.0-1.1            | SE137450.003                                                              | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP04_0.1-0.2            | SE137450.004                                                              | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP05_2.0-2.2            | SE137450.005                                                              | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP06_3.0-3.1            | SE137450.006                                                              | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP07_1.0-1.2            | SE137450.007                                                              | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP08_1.1-1.2            | SE137450.008                                                              | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP09_0.4-0.5            | SE137450.009                                                              | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| TP10_0.1-0.2            | SE137450.010                                                              | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |
| QA1                     | SE137450.011                                                              | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |  |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

| Total Recoverable Metals |              | A 200.0 Digest |             |             |                |             | Moulou. ME-(Ao | /[[110]/110/0//11020 |
|--------------------------|--------------|----------------|-------------|-------------|----------------|-------------|----------------|----------------------|
| Sample Name              | Sample No.   | QC Ref         | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed             |
| TP01_0.1-0.2             | SE137450.001 | LB074444       | 18 Mar 2015 | 20 Mar 2015 | 14 Sep 2015    | 25 Mar 2015 | 14 Sep 2015    | 26 Mar 2015          |
| TP02_0.5-0.6             | SE137450.002 | LB074444       | 18 Mar 2015 | 20 Mar 2015 | 14 Sep 2015    | 25 Mar 2015 | 14 Sep 2015    | 26 Mar 2015          |
| TP03_1.0-1.1             | SE137450.003 | LB074444       | 18 Mar 2015 | 20 Mar 2015 | 14 Sep 2015    | 25 Mar 2015 | 14 Sep 2015    | 26 Mar 2015          |
| TP04_0.1-0.2             | SE137450.004 | LB074444       | 18 Mar 2015 | 20 Mar 2015 | 14 Sep 2015    | 25 Mar 2015 | 14 Sep 2015    | 26 Mar 2015          |
| TP05_2.0-2.2             | SE137450.005 | LB074444       | 18 Mar 2015 | 20 Mar 2015 | 14 Sep 2015    | 25 Mar 2015 | 14 Sep 2015    | 26 Mar 2015          |
| TP06_3.0-3.1             | SE137450.006 | LB074444       | 18 Mar 2015 | 20 Mar 2015 | 14 Sep 2015    | 25 Mar 2015 | 14 Sep 2015    | 26 Mar 2015          |
| TP07_1.0-1.2             | SE137450.007 | LB074444       | 19 Mar 2015 | 20 Mar 2015 | 15 Sep 2015    | 25 Mar 2015 | 15 Sep 2015    | 26 Mar 2015          |
| TP08_1.1-1.2             | SE137450.008 | LB074444       | 19 Mar 2015 | 20 Mar 2015 | 15 Sep 2015    | 25 Mar 2015 | 15 Sep 2015    | 26 Mar 2015          |
| TP09_0.4-0.5             | SE137450.009 | LB074444       | 19 Mar 2015 | 20 Mar 2015 | 15 Sep 2015    | 25 Mar 2015 | 15 Sep 2015    | 26 Mar 2015          |
| TP10_0.1-0.2             | SE137450.010 | LB074444       | 19 Mar 2015 | 20 Mar 2015 | 15 Sep 2015    | 25 Mar 2015 | 15 Sep 2015    | 26 Mar 2015          |
| QA1                      | SE137450.011 | LB074444       | 19 Mar 2015 | 20 Mar 2015 | 15 Sep 2015    | 25 Mar 2015 | 15 Sep 2015    | 26 Mar 2015          |

#### TRH (Total Recoverable Hydrocarbons) in Soil

|            | iyarooarborio) in con |          |             |             |                |             | moulou.      |             |
|------------|-----------------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| mple Name  | Sample No.            | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
| 01_0.1-0.2 | SE137450.001          | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 02_0.5-0.6 | SE137450.002          | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 03_1.0-1.1 | SE137450.003          | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 04_0.1-0.2 | SE137450.004          | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 05_2.0-2.2 | SE137450.005          | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 06_3.0-3.1 | SE137450.006          | LB074380 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 07_1.0-1.2 | SE137450.007          | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 08_1.1-1.2 | SE137450.008          | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 09_0.4-0.5 | SE137450.009          | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 10_0.1-0.2 | SE137450.010          | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
| 1          | SE137450.011          | LB074380 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 24 Mar 2015 | 03 May 2015  | 27 Mar 2015 |
|            |                       |          |             |             |                |             |              |             |

#### VOC's in Soil

Sam

TP01 TP02 TP03 TP04 TP05 TP06 TP07 TP08 TP09 TP10 QA1

| VOC's in Soil |              |          |             |             |                |             | Method: ME-(AU | )-[ENV]AN433/AN434 |
|---------------|--------------|----------|-------------|-------------|----------------|-------------|----------------|--------------------|
| Sample Name   | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed           |
| TP01_0.1-0.2  | SE137450.001 | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |
| TP02_0.5-0.6  | SE137450.002 | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |
| TP03_1.0-1.1  | SE137450.003 | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |
| TP04_0.1-0.2  | SE137450.004 | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |
| TP05_2.0-2.2  | SE137450.005 | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |
| TP06_3.0-3.1  | SE137450.006 | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |
| TP07_1.0-1.2  | SE137450.007 | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |
| TP08_1.1-1.2  | SE137450.008 | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015    | 27 Mar 2015        |



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

| VOC's in Soil (continued) |                |          |             |             |                |             | Method: ME-(AU        | )-[ENV]AN433/AN43 |
|---------------------------|----------------|----------|-------------|-------------|----------------|-------------|-----------------------|-------------------|
| Sample Name               | Sample No.     | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due          | Analysed          |
| TP09_0.4-0.5              | SE137450.009   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP10_0.1-0.2              | SE137450.010   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| QA1                       | SE137450.011   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| Volatile Petroleum Hydrod | arbons in Soil |          |             |             |                |             | Method: ME-(AU)-[ENV] | AN433/AN434/AN41  |
| Sample Name               | Sample No.     | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due          | Analysed          |
| TP01_0.1-0.2              | SE137450.001   | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP02_0.5-0.6              | SE137450.002   | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP03_1.0-1.1              | SE137450.003   | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP04_0.1-0.2              | SE137450.004   | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP05_2.0-2.2              | SE137450.005   | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP06_3.0-3.1              | SE137450.006   | LB074326 | 18 Mar 2015 | 20 Mar 2015 | 01 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP07_1.0-1.2              | SE137450.007   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP08_1.1-1.2              | SE137450.008   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP09_0.4-0.5              | SE137450.009   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| TP10_0.1-0.2              | SE137450.010   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |
| QA1                       | SE137450.011   | LB074326 | 19 Mar 2015 | 20 Mar 2015 | 02 Apr 2015    | 23 Mar 2015 | 02 May 2015           | 27 Mar 2015       |



## **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| O Destinidas in Coll                          |                              |                              |       |                        |              |
|-----------------------------------------------|------------------------------|------------------------------|-------|------------------------|--------------|
| C Pesticides in Soil                          | Somalo Nomo                  | Sample Number                | Unito | Method: ME-(AU)-       |              |
| Parameter                                     | Sample Name                  | Sample Number                | Units | Criteria               | Recovery     |
| Tetrachloro-m-xylene (TCMX) (Surrogate)       | TP03_1.0-1.1<br>TP04_0.1-0.2 | SE137450.003<br>SE137450.004 | %     | 60 - 130%<br>60 - 130% | 91<br>110    |
|                                               | TP04_0.1-0.2<br>TP07_1.0-1.2 | SE137450.007                 | %     | 60 - 130%              | 106          |
|                                               | TP08_1.1-1.2                 | SE137450.008                 | %     | 60 - 130%              | 110          |
|                                               | TP09_0.4-0.5                 | SE137450.009                 | %     | 60 - 130%              | 109          |
|                                               | QA1                          | SE137450.011                 | %     | 60 - 130%              | 105          |
| P Pesticides in Soil                          |                              |                              |       | Method: ME-(AU)-       | [ENV]AN400/A |
| arameter                                      | Sample Name                  | Sample Number                | Units | Criteria               | Recovery     |
| 2-fluorobiphenyl (Surrogate)                  | TP03_1.0-1.1                 | SE137450.003                 | %     | 60 - 130%              | 88           |
|                                               | TP04_0.1-0.2                 | SE137450.004                 | %     | 60 - 130%              | 90           |
|                                               | <br>TP07_1.0-1.2             | SE137450.007                 | %     | 60 - 130%              | 88           |
|                                               | TP08_1.1-1.2                 | SE137450.008                 | %     | 60 - 130%              | 90           |
|                                               | TP09_0.4-0.5                 | SE137450.009                 | %     | 60 - 130%              | 90           |
|                                               | QA1                          | SE137450.011                 | %     | 60 - 130%              | 88           |
| 114-p-terphenyl (Surrogate)                   | TP03_1.0-1.1                 | SE137450.003                 | %     | 60 - 130%              | 98           |
|                                               | TP04_0.1-0.2                 | SE137450.004                 | %     | 60 - 130%              | 100          |
|                                               | TP07_1.0-1.2                 | SE137450.007                 | %     | 60 - 130%              | 98           |
|                                               | TP08_1.1-1.2                 | SE137450.008                 | %     | 60 - 130%              | 96           |
|                                               | TP09_0.4-0.5                 | SE137450.009                 | %     | 60 - 130%              | 98           |
|                                               | QA1                          | SE137450.011                 | %     | 60 - 130%              | 94           |
| H (Polynuclear Aromatic Hydrocarbons) in Soil |                              |                              |       | Method: M              | E-(AU)-[ENV] |
| arameter                                      | Sample Name                  | Sample Number                | Units | Criteria               | Recover      |
| 2-fluorobiphenyl (Surrogate)                  | TP03_1.0-1.1                 | SE137450.003                 | %     | 70 - 130%              | 88           |
|                                               | TP04_0.1-0.2                 | SE137450.004                 | %     | 70 - 130%              | 90           |
|                                               | TP07_1.0-1.2                 | SE137450.007                 | %     | 70 - 130%              | 88           |
|                                               | TP08_1.1-1.2                 | SE137450.008                 | %     | 70 - 130%              | 90           |
|                                               | TP09_0.4-0.5                 | SE137450.009                 | %     | 70 - 130%              | 90           |
| 114-p-terphenyl (Surrogate)                   | TP03_1.0-1.1                 | SE137450.003                 | %     | 70 - 130%              | 98           |
| ····· • • • • • • • • • • • • • • • • •       | TP04_0.1-0.2                 | SE137450.004                 | %     | 70 - 130%              | 100          |
|                                               | TP07_1.0-1.2                 | SE137450.007                 | %     | 70 - 130%              | 98           |
|                                               | TP08_1.1-1.2                 | SE137450.008                 | %     | 70 - 130%              | 96           |
|                                               | TP09_0.4-0.5                 | SE137450.009                 | %     | 70 - 130%              | 98           |
| 5-nitrobenzene (Surrogate)                    | TP03_1.0-1.1                 | SE137450.003                 | %     | 70 - 130%              | 86           |
|                                               | TP04_0.1-0.2                 | SE137450.004                 | %     | 70 - 130%              | 86           |
|                                               | TP07_1.0-1.2                 | SE137450.007                 | %     | 70 - 130%              | 86           |
|                                               | TP08_1.1-1.2                 | SE137450.008                 | %     | 70 - 130%              | 86           |
|                                               | TP09_0.4-0.5                 | SE137450.009                 | %     | 70 - 130%              | 86           |
| DC's in Soil                                  |                              |                              |       | Method: ME-(AU)-       | [ENV]AN433/  |
| arameter                                      | Sample Name                  | Sample Number                | Units | Criteria               | Recover      |
| Bromofluorobenzene (Surrogate)                | TP01_0.1-0.2                 | SE137450.001                 | %     | 60 - 130%              | 78           |
|                                               | TP02_0.5-0.6                 | SE137450.002                 | %     | 60 - 130%              | 75           |
|                                               | TP03_1.0-1.1                 | SE137450.003                 | %     | 60 - 130%              | 81           |
|                                               | TP04_0.1-0.2                 | SE137450.004                 | %     | 60 - 130%              | 77           |
|                                               | TP05_2.0-2.2                 | SE137450.005                 | %     | 60 - 130%              | 81           |
|                                               | TP06_3.0-3.1                 | SE137450.006                 | %     | 60 - 130%              | 85           |
|                                               | TP07_1.0-1.2                 | SE137450.007                 | %     | 60 - 130%              | 76           |
|                                               | TP08_1.1-1.2                 | SE137450.008                 | %     | 60 - 130%              | 83           |
|                                               | TP09_0.4-0.5                 | SE137450.009                 | %     | 60 - 130%              | 79           |
|                                               | TP10_0.1-0.2                 | SE137450.010                 | %     | 60 - 130%              | 82           |
|                                               | QA1                          | SE137450.011                 | %     | 60 - 130%              | 83           |
| 4-1,2-dichloroethane (Surrogate)              | TP01_0.1-0.2                 | SE137450.001                 | %     | 60 - 130%              | 94           |
|                                               | TP02_0.5-0.6                 | SE137450.002                 | %     | 60 - 130%              | 93           |
|                                               | TP03_1.0-1.1                 | SE137450.003                 | %     | 60 - 130%              | 104          |
|                                               | TP04_0.1-0.2                 | SE137450.004                 | %     | 60 - 130%              | 97           |
|                                               | TP05_2.0-2.2                 | SE137450.005                 | %     | 60 - 130%              | 92           |
|                                               | TP06_3.0-3.1                 | SE137450.006                 | %     | 60 - 130%              | 108          |
|                                               |                              |                              |       |                        |              |
|                                               | TP07_1.0-1.2                 | SE137450.007                 | %     | 60 - 130%              | 97           |
|                                               | TP07_1.0-1.2<br>TP08_1.1-1.2 | SE137450.007<br>SE137450.008 | %     | 60 - 130%<br>60 - 130% | 117          |



## **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434

| Parameter                                                   | Sample Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                                                              | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recovery %                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113                                                                                                                                                                                                                                                                          |
|                                                             | QA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111                                                                                                                                                                                                                                                                          |
| d8-toluene (Surrogate)                                      | TP01_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                                                                                                                                                                                                                           |
|                                                             | TP02_0.5-0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                           |
|                                                             | TP03_1.0-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                           |
|                                                             | <br>TP04_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SE137450.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72                                                                                                                                                                                                                                                                           |
|                                                             | TP05_2.0-2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74                                                                                                                                                                                                                                                                           |
|                                                             | TP06_3.0-3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                           |
|                                                             | TP07_1.0-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                                                                                                                                                                                                                                                                           |
|                                                             | TP08_1.1-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74                                                                                                                                                                                                                                                                           |
|                                                             | TP09_0.4-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84                                                                                                                                                                                                                                                                           |
|                                                             | TP10 0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73                                                                                                                                                                                                                                                                           |
|                                                             | QA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                                                                                                                                                                                                                                                                           |
| Dibromofluoromethane (Surrogate)                            | TP01_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                           |
| Distontinuoromentane (ourrogate)                            | TP02_0.5-0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79                                                                                                                                                                                                                                                                           |
|                                                             | TP03_1.0-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                                                                                                                                                                                                                                                                           |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76                                                                                                                                                                                                                                                                           |
|                                                             | TP04_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |
|                                                             | TP05_2.0-2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73                                                                                                                                                                                                                                                                           |
|                                                             | TP06_3.0-3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                                                                                                                                                                                                                           |
|                                                             | TP07_1.0-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72                                                                                                                                                                                                                                                                           |
|                                                             | TP08_1.1-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                                                                                                                                                                                                                                                                           |
|                                                             | TP09_0.4-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                           |
|                                                             | TP10_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82                                                                                                                                                                                                                                                                           |
|                                                             | QA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                                                                                                                                                                                                                                                                           |
| Volatile Petroleum Hydrocarbons in Soil                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metho                                                              | d: ME-(AU)-[ENV]A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N433/AN434/AN41                                                                                                                                                                                                                                                              |
| Parameter                                                   | Sample Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                                                              | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recovery %                                                                                                                                                                                                                                                                   |
| Bromofluorobenzene (Surrogate)                              | TP01_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                           |
|                                                             | TP02_0.5-0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                           |
|                                                             | TP03_1.0-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                                                                                                                                                                                                                           |
|                                                             | TP04_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77                                                                                                                                                                                                                                                                           |
|                                                             | TP05_2.0-2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                                                                                                                                                                                                                           |
|                                                             | TP06_3.0-3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85                                                                                                                                                                                                                                                                           |
|                                                             | TP07_1.0-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                                                                                                                                                                                                                                                                           |
|                                                             | TP08_1.1-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                                                                                                                                                                                                                                                                           |
|                                                             | TP09_0.4-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79                                                                                                                                                                                                                                                                           |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02101100.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70                                                                 | 00 10070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82                                                                                                                                                                                                                                                                           |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SE137450.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |
|                                                             | TP10_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SE137450.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |
| d4.12.dichloroethane (Surrogate)                            | TP10_0.1-0.2<br>QA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                                                                                                                                                                                                                                                                           |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2<br>QA1<br>TP01_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011<br>SE137450.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                  | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83<br>94                                                                                                                                                                                                                                                                     |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2<br>QA1<br>TP01_0.1-0.2<br>TP02_0.5-0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011<br>SE137450.001<br>SE137450.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %<br>%                                                             | 60 - 130%<br>60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83<br>94<br>93                                                                                                                                                                                                                                                               |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2<br>QA1<br>TP01_0.1-0.2<br>TP02_0.5-0.6<br>TP03_1.0-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011<br>SE137450.001<br>SE137450.002<br>SE137450.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %<br>%<br>%                                                        | 60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83<br>94<br>93<br>104                                                                                                                                                                                                                                                        |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2<br>QA1<br>TP01_0.1-0.2<br>TP02_0.5-0.6<br>TP03_1.0-1.1<br>TP04_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011<br>SE137450.001<br>SE137450.002<br>SE137450.003<br>SE137450.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %<br>%<br>%<br>%                                                   | 60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83<br>94<br>93<br>104<br>97                                                                                                                                                                                                                                                  |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2<br>QA1<br>TP01_0.1-0.2<br>TP02_0.5-0.6<br>TP03_1.0-1.1<br>TP04_0.1-0.2<br>TP05_2.0-2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE137450.011<br>SE137450.001<br>SE137450.002<br>SE137450.003<br>SE137450.004<br>SE137450.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %<br>%<br>%<br>%<br>%                                              | 60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83<br>94<br>93<br>104<br>97<br>92                                                                                                                                                                                                                                            |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %<br>%<br>%<br>%<br>%                                              | 60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83<br>94<br>93<br>104<br>97<br>92<br>108                                                                                                                                                                                                                                     |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %<br>%<br>%<br>%<br>%<br>%                                         | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97                                                                                                                                                                                                                               |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %<br>%<br>%<br>%<br>%<br>%                                         | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117                                                                                                                                                                                                                        |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2         QA1         TP01_0.1-0.2         TP02_0.5-0.6         TP03_1.0-1.1         TP04_0.1-0.2         TP05_2.0-2.2         TP06_3.0-3.1         TP07_1.0-1.2         TP08_1.1-1.2         TP09_0.4-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %<br>%<br>%<br>%<br>%<br>%<br>%                                    | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109                                                                                                                                                                                                                 |
| d4-1,2-dichloroethane (Surrogate)                           | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP09_0.4-0.5           TP10_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                             | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%                               | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%                                                                                                                                                                                                                                                                                                                                                     | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113                                                                                                                                                                                                          |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0.1.1           TP04_0.1-0.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP09_0.4-0.5           TP10_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                    | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.010           SE137450.010           SE137450.011                                                                                                                                                                                                                                                                                                                                                                                                                               | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%                          | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111                                                                                                                                                                                                   |
| d4-1,2-dichloroethane (Surrogate)<br>d8-toluene (Surrogate) | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP06_3.0-3.1           TP05_1.0-1.2           TP05_1.1-1.2           TP09_0.4-0.5           TP10_0.1-0.2           QA1                                                                                                                                                                                                                                                                                                                                                                                                                      | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.010           SE137450.011           SE137450.001                                                                                                                                                                                                                                                                                                                                                                                                                               | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%                     | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111<br>81                                                                                                                                                                                             |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2                                                                                                                                                                                                                                                                                                                                                                                               | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.011           SE137450.001           SE137450.001                                                                                                                                                                                                                                                                                                                                                                                 | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%                     | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                                            | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111<br>81<br>78                                                                                                                                                                                       |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP01_0.1-0.1           TP01_0.1-0.2           TP03_1.0-1.1                                                                                                                                                                                                                                                                                                                          | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.011           SE137450.001           SE137450.002           SE137450.003                                                                                                                                                                                                                                                                                                                                                          | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%                | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                               | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111<br>81<br>78<br>75                                                                                                                                                                                 |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP09_1.0-1.2           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP05_2.0-2.1           TP06_3.0-3.1           TP06_3.0-3.1           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP03_1.0-1.1           TP04_0.1-0.2                                                                                                                                                                                                                                       | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.010           SE137450.011           SE137450.011           SE137450.002           SE137450.003           SE137450.004                                                                                                                                                                                                                                                                                                                                                          | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%      | 60 - 130%<br>60 - 130%                                                                                                                                                                                                                                                                                                                                                                                                  | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111<br>81<br>78<br>75<br>72                                                                                                                                                                           |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP08_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP01_0.1-0.2           TP03_1.0-1.1           TP04_0.1-0.2           TP03_1.0-1.2                                                                                                                                                                                                                                                                            | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.010           SE137450.011           SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.003           SE137450.004           SE137450.005                                                                                                                                                                                                                                                              | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%      | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%                                                                                 | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111<br>81<br>78<br>75<br>72<br>72<br>74                                                                                                                                                               |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP00_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP03_1.0-1.1           TP04_0.1-0.2           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1                                                                                                                                                                                                                              | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.004           SE137450.005           SE137450.005           SE137450.006                                                                                                                                                                                                                | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>% | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%                                         | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111<br>81<br>78<br>75<br>72<br>72<br>74<br>78                                                                                                                                                         |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP09_1.1-1.2           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP05_1.0-1.2                                                                                                                                           | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.005           SE137450.005           SE137450.006           SE137450.005           SE137450.006           SE137450.005           SE137450.006           SE137450.007                                                                                                                    | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>% | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%                     | 83<br>94<br>93<br>104<br>97<br>92<br>108<br>97<br>117<br>109<br>113<br>111<br>81<br>78<br>75<br>72<br>72<br>74<br>78<br>76                                                                                                                                                   |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP02_0.5-0.6           TP03_1.0-1.1           TP02_0.5-0.6           TP03_1.0-1.1           TP05_2.0-2.2           TP05_2.0-2.2           TP05_1.0-1.2           TP05_2.0-2.1           TP05_2.0-2.1           TP05_1.0-1.2           TP05_1.0-1.2           TP05_1.0-1.2           TP05_1.0-1.2           TP05_1.0-1.2                                      | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.001           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.005           SE137450.006           SE137450.007           SE137450.008                                                                                                                                                                                                                | % % % % % % % % % % % % % % % % % % %                              | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%                     | 83           94           93           104           97           92           108           97           117           109           113           111           81           78           72           74           78           76           74                           |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0.1.1           TP04_0.1-0.2           TP05_0.2-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP09_0.4-0.5           TP01_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP05_0.3-1.1           TP05_0.3-1.1           TP05_0.3-1.1           TP05_0.3-1.1           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP08_1.1-1.2 | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.011           SE137450.002           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.007           SE137450.008           SE137450.008           SE137450.009 | % % % % % % % % % % % % % % % % % % %                              | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130% | 83           94           93           104           97           92           108           97           117           109           113           111           81           78           75           72           74           78           76           74           84 |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP02_0.5-0.6           TP03_1.0-1.1           TP02_0.5-0.6           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP05_1.0-1.1           TP05_1.0-1.2           TP05_2.0-2.1           TP05_1.0-1.2           TP05_1.0-1.2           TP05_1.0-1.2           TP05_1.0-1.2           TP05_1.0-1.2                                      | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.001           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.005           SE137450.006           SE137450.007           SE137450.008                                                                                                                                                                                                                | % % % % % % % % % % % % % % % % % % %                              | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%                     | 83           94           93           104           97           92           108           97           117           109           113           111           81           78           72           74           78           76           74                           |
|                                                             | TP10_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP03_1.0.1.1           TP04_0.1-0.2           TP05_0.2-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP09_0.4-0.5           TP01_0.1-0.2           QA1           TP01_0.1-0.2           TP02_0.5-0.6           TP09_0.4-0.5           TP10_0.1-0.2           QA1           TP03_1.0-1.1           TP04_0.1-0.2           TP05_2.0-2.2           TP06_3.0-3.1           TP07_1.0-1.2           TP05_0.3-1.1           TP05_0.3-1.1           TP05_0.3-1.1           TP05_0.3-1.1           TP06_3.0-3.1           TP07_1.0-1.2           TP08_1.1-1.2           TP08_1.1-1.2 | SE137450.011           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.009           SE137450.010           SE137450.011           SE137450.002           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.006           SE137450.007           SE137450.008           SE137450.009           SE137450.001           SE137450.002           SE137450.003           SE137450.004           SE137450.005           SE137450.007           SE137450.008           SE137450.008           SE137450.009 | % % % % % % % % % % % % % % % % % % %                              | 60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130% | 83           94           93           104           97           92           108           97           117           109           113           111           81           78           75           72           74           78           76           74           84 |



## **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Parameter                        | Sample Name  | Sample Number | Units | Criteria  | Recovery % |
|----------------------------------|--------------|---------------|-------|-----------|------------|
| Dibromofluoromethane (Surrogate) | TP02_0.5-0.6 | SE137450.002  | %     | 60 - 130% | 79         |
|                                  | TP03_1.0-1.1 | SE137450.003  | %     | 60 - 130% | 76         |
|                                  | TP04_0.1-0.2 | SE137450.004  | %     | 60 - 130% | 74         |
|                                  | TP05_2.0-2.2 | SE137450.005  | %     | 60 - 130% | 73         |
|                                  | TP06_3.0-3.1 | SE137450.006  | %     | 60 - 130% | 81         |
|                                  | TP07_1.0-1.2 | SE137450.007  | %     | 60 - 130% | 72         |
|                                  | TP08_1.1-1.2 | SE137450.008  | %     | 60 - 130% | 83         |
|                                  | TP09_0.4-0.5 | SE137450.009  | %     | 60 - 130% | 78         |
|                                  | TP10_0.1-0.2 | SE137450.010  | %     | 60 - 130% | 82         |
|                                  | QA1          | SE137450.011  | %     | 60 - 130% | 83         |



## **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| Mercury in Soil |           |       | Meth | od: ME-(AU)-[ENV]AN312 |
|-----------------|-----------|-------|------|------------------------|
| Sample Number   | Parameter | Units | LOR  | Result                 |
| LB074476.001    | Mercury   | mg/kg | 0.01 | <0.01                  |

#### OC Pesticides in Soil

| OC Pesticides in Soil |                                         |       | Method: ME- | (AU)-[ENV]AN400/AN420 |
|-----------------------|-----------------------------------------|-------|-------------|-----------------------|
| Sample Number         | Parameter                               | Units | LOR         | Result                |
| LB074380.001          | Hexachlorobenzene (HCB)                 | mg/kg | 0.1         | <0.1                  |
|                       | Alpha BHC                               | mg/kg | 0.1         | <0.1                  |
|                       | Lindane                                 | mg/kg | 0.1         | <0.1                  |
|                       | Heptachlor                              | mg/kg | 0.1         | <0.1                  |
|                       | Aldrin                                  | mg/kg | 0.1         | <0.1                  |
|                       | Beta BHC                                | mg/kg | 0.1         | <0.1                  |
|                       | Delta BHC                               | mg/kg | 0.1         | <0.1                  |
|                       | Heptachlor epoxide                      | mg/kg | 0.1         | <0.1                  |
|                       | Alpha Endosulfan                        | mg/kg | 0.2         | <0.2                  |
|                       | Gamma Chlordane                         | mg/kg | 0.1         | <0.1                  |
|                       | Alpha Chlordane                         | mg/kg | 0.1         | <0.1                  |
|                       | p,p'-DDE                                | mg/kg | 0.1         | <0.1                  |
|                       | Dieldrin                                | mg/kg | 0.2         | <0.2                  |
|                       | Endrin                                  | mg/kg | 0.2         | <0.2                  |
|                       | Beta Endosulfan                         | mg/kg | 0.2         | <0.2                  |
|                       | p,p'-DDD                                | mg/kg | 0.1         | <0.1                  |
|                       | p,p'-DDT                                | mg/kg | 0.1         | <0.1                  |
|                       | Endosulfan sulphate                     | mg/kg | 0.1         | <0.1                  |
|                       | Endrin Aldehyde                         | mg/kg | 0.1         | <0.1                  |
|                       | Methoxychlor                            | mg/kg | 0.1         | <0.1                  |
|                       | Endrin Ketone                           | mg/kg | 0.1         | <0.1                  |
|                       | Isodrin                                 | mg/kg | 0.1         | <0.1                  |
|                       | Mirex                                   | mg/kg | 0.1         | <0.1                  |
| Surrogates            | Tetrachloro-m-xylene (TCMX) (Surrogate) | %     | -           | 105                   |
| OP Pesticides in Soil |                                         |       | Method: ME- | (AU)-[ENV]AN400/AN420 |
| Sample Number         | Parameter                               | Units | LOR         | Result                |
| LB074380.001          | Dichlorvos                              | mg/kg | 0.5         | <0.5                  |
|                       | Dimethoate                              | mg/kg | 0.5         | <0.5                  |
|                       | Diazinon (Dimpylate)                    | mg/kg | 0.5         | <0.5                  |
|                       | Fenitrothion                            | mg/kg | 0.2         | <0.2                  |
|                       | Malathion                               | mg/kg | 0.2         | <0.2                  |
|                       | Chlorpyrifos (Chlorpyrifos Ethyl)       | mg/kg | 0.2         | <0.2                  |
|                       | Parathion-ethyl (Parathion)             | mg/kg | 0.2         | <0.2                  |
|                       | Bromophos Ethyl                         | mg/kg | 0.2         | <0.2                  |
|                       | Methidathion                            | mg/kg | 0.5         | <0.5                  |
|                       |                                         |       |             |                       |

| Surrogates                                               | 2-fluorobiphenyl (Surrogate)        | c |
|----------------------------------------------------------|-------------------------------------|---|
|                                                          | d14-p-terphenyl (Surrogate)         |   |
|                                                          |                                     |   |
| PAH (Polynuclear Aromatic Hydrocarbons)                  | ) in Soil                           |   |
| PAH (Polynuclear Aromatic Hydrocarbons)<br>Sample Number | ) <mark>in Soil</mark><br>Parameter | U |

Azinphos-methyl (Guthion)

Ethion

| Sample Number | Parameter           | Units | LOR | Result |
|---------------|---------------------|-------|-----|--------|
| LB074380.001  | Naphthalene         | mg/kg | 0.1 | <0.1   |
|               | 2-methylnaphthalene | mg/kg | 0.1 | <0.1   |
|               | 1-methylnaphthalene | mg/kg | 0.1 | <0.1   |
|               | Acenaphthylene      | mg/kg | 0.1 | <0.1   |
|               | Acenaphthene        | mg/kg | 0.1 | <0.1   |
|               | Fluorene            | mg/kg | 0.1 | <0.1   |
|               | Phenanthrene        | mg/kg | 0.1 | <0.1   |
|               | Anthracene          | mg/kg | 0.1 | <0.1   |
|               | Fluoranthene        | mg/kg | 0.1 | <0.1   |
|               | Pyrene              | mg/kg | 0.1 | <0.1   |
|               | Benzo(a)anthracene  | mg/kg | 0.1 | <0.1   |
|               | Chrysene            | mg/kg | 0.1 | <0.1   |
|               | Benzo(a)pyrene      | mg/kg | 0.1 | <0.1   |

0.2

0.2

-

mg/kg

mg/kg

<0.2

<0.2

78

88 Method: ME-(AU)-[ENV]AN420



## **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Method: ME-(AU)-[ENV]AN420 PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Sample Number Param Units LOR Result LB074380.001 Indeno(1,2,3-cd)pyrene mg/kg 0.1 < 0.1 Dibenzo(a&h)anthracene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(ghi)perylene mg/kg < 0.8 Total PAH mg/kg 0.8 d5-nitrobenzene (Surrogate) Surrogates % 80 2-fluorobiphenyl (Surrogate) % 78 d14-p-terphenyl (Surrogate) 88 % -Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB074444.001 Arsenic, As mg/kg 1 <1 Beryllium, Be mg/kg 0.5 <0.5 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr 0.5 <0.5 mg/kg Cobalt. Co mg/kg 0.5 < 0.5 Copper, Cu mg/kg 0.5 <0.5 Lead, Pb <1 mg/kg 1 Manganese, Mn mg/kg 1 <1 Nickel, Ni 0.5 <0.5 mg/kg Selenium, Se mg/kg 3 <3 Zinc, Zn mg/kg 2 <2 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Result LB074380.001 TRH C10-C14 20 mg/kg <20 TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg TRH C37-C40 <100 100 mg/kg TRH C10-C36 Total mg/kg 110 <110 VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434 LOR Sample Number Parameter Units Result LB074326.001 Monocyclic Aromatic Benzene mg/kg 0.1 < 0.1 Hydrocarbons Toluene mg/kg 0.1 <0.1 Ethylbenzene 0.1 <0.1 mg/kg m/p-xylene mg/kg 0.2 < 0.2 o-xylene mg/kg 0.1 <0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg Surrogates Dibromofluoromethane (Surrogate) % 96 d4-1,2-dichloroethane (Surrogate) % 117 d8-toluene (Surrogate) % 88 Bromofluorobenzene (Surrogate) % 94 Totals Total BTEX\* mg/kg 0.6 <0.6 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410 Sample Number Units LOR Result Parameter LB074326.001 TRH C6-C9 mg/kg 20 <20 Surrogates Dibromofluoromethane (Surrogate) % 96 d4-1,2-dichloroethane (Surrogate) % 117 d8-toluene (Surrogate) % 88



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Mercury in Soil

| Mercury in Soil Method: ME-(AU)-[El |              |           |         |      |              |              |            | ENVJAN312 |
|-------------------------------------|--------------|-----------|---------|------|--------------|--------------|------------|-----------|
| Original                            | Duplicate    | Parameter | Units L | OR   | Original     | Duplicate    | Criteria % | RPD %     |
| SE137450.010                        | LB074476.014 | Mercury   | mg/kg ( | 0.01 | 0.01         | 0.01         | 200        | 0         |
| SE137500.008                        | LB074476.024 | Mercury   | mg/kg ( | 0.01 | 0.0086396207 | 0.0277819937 | 200        | 0         |

#### **Moisture Content**

| Moisture Content Method: ME-(AU)-[ENV]/ |              |            |       |     |          |           |            |       |
|-----------------------------------------|--------------|------------|-------|-----|----------|-----------|------------|-------|
| Original                                | Duplicate    | Parameter  | Units | LOR | Original | Duplicate | Criteria % | RPD % |
| SE137450.008                            | LB074485.011 | % Moisture | %w/w  | 0.5 | 9.3      | 10        | 40         | 8     |
| SE137450.011                            | LB074485.015 | % Moisture | %     | 0.5 | 8.0      | 6.5       | 44         | 20    |

#### OC Pesticides in Soil

| Original          | Duplicate           |              | Parameter                               | Units | LOR | Original | Duplicate  | Criteria %   | RPD %    |
|-------------------|---------------------|--------------|-----------------------------------------|-------|-----|----------|------------|--------------|----------|
| SE137450.011      | LB074380.016        |              | Hexachlorobenzene (HCB)                 | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
| 52137430.011      | EB074500.010        |              | Alpha BHC                               | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Lindane                                 | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Heptachlor                              | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Aldrin                                  | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Beta BHC                                | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Delta BHC                               | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Heptachlor epoxide                      | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | o,p'-DDE                                | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Alpha Endosulfan                        |       | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Gamma Chlordane                         | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              |                                         | mg/kg | 0.1 |          |            | 200          | 0        |
|                   |                     |              | Alpha Chlordane                         | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | trans-Nonachlor                         | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | p,p'-DDE                                | mg/kg |     |          |            |              | 0        |
|                   |                     |              | Dieldrin                                | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | Endrin                                  | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | o,p'-DDD                                | mg/kg | 0.1 | <0.1     | <0.1       | 200          |          |
|                   |                     |              | o,p'-DDT                                | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Beta Endosulfan                         | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | p,p'-DDD                                | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | p,p'-DDT                                | mg/kg | 0.1 | <0.1     | <0.1       | 200          |          |
|                   |                     |              | Endosulfan sulphate                     | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Endrin Aldehyde                         | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Methoxychlor                            | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Endrin Ketone                           | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Isodrin                                 | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     |              | Mirex                                   | mg/kg | 0.1 | <0.1     | <0.1       | 200          | 0        |
|                   |                     | Surrogates   | Tetrachloro-m-xylene (TCMX) (Surrogate) | mg/kg | -   | 0.16     | 0.17       | 30           | 4        |
| P Pesticides in S | oil                 |              |                                         |       |     |          | Method: ME | -(AU)-[ENV]A | N400/AN  |
| Driginal          | Duplicate           |              | Parameter                               | Units | LOR | Original | Duplicate  | Criteria %   | RPD S    |
| E137450.004       | LB074380.008        |              | Dichlorvos                              | mg/kg | 0.5 | <0.5     | <0.5       | 200          | 0        |
|                   |                     |              | Dimethoate                              | mg/kg | 0.5 | <0.5     | <0.5       | 200          | 0        |
|                   |                     |              | Diazinon (Dimpylate)                    | mg/kg | 0.5 | <0.5     | <0.5       | 200          | 0        |
|                   |                     |              | Fenitrothion                            | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | Malathion                               | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | Chlorpyrifos (Chlorpyrifos Ethyl)       | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | Parathion-ethyl (Parathion)             | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | Bromophos Ethyl                         | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | Methidathion                            | mg/kg | 0.5 | <0.5     | <0.5       | 200          | 0        |
|                   |                     |              | Ethion                                  | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     |              | Azinphos-methyl (Guthion)               | mg/kg | 0.2 | <0.2     | <0.2       | 200          | 0        |
|                   |                     | Surrogates   | 2-fluorobiphenyl (Surrogate)            | mg/kg | -   | 0.5      | 0.5        | 30           | 2        |
|                   |                     |              | d14-p-terphenyl (Surrogate)             | mg/kg | -   | 0.5      | 0.5        | 30           | 2        |
| H (Dohmusia       |                     | ana) in Seil |                                         |       |     |          |            |              |          |
| r (roiynuciear)   | Aromatic Hydrocarbo |              |                                         |       |     |          | Meth       | od: ME-(AU)- | [CIAA]AI |

| Original     | Duplicate    | Parameter           | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|---------------------|-------|-----|----------|-----------|------------|-------|
| SE137450.004 | LB074380.009 | Naphthalene         | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | 2-methylnaphthalene | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | 1-methylnaphthalene | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| Original         | Duplicate              |                 | Parameter                                                                                                                                         | Units          | LOR | Original     | Duplicate         | Criteria %   | RPD %  |
|------------------|------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|--------------|-------------------|--------------|--------|
| SE137450.004     | LB074380.009           |                 | Acenaphthylene                                                                                                                                    | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
| SE137430.004     | LD074380.009           |                 | Acenaphthene                                                                                                                                      | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Fluorene                                                                                                                                          | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Phenanthrene                                                                                                                                      | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Anthracene                                                                                                                                        | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Fluoranthene                                                                                                                                      | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Pyrene                                                                                                                                            | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 |                                                                                                                                                   |                | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Benzo(a)anthracene                                                                                                                                | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Chrysene                                                                                                                                          | mg/kg          |     |              |                   |              |        |
|                  |                        |                 | Benzo(b&j)fluoranthene                                                                                                                            | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Benzo(k)fluoranthene                                                                                                                              | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Benzo(a)pyrene                                                                                                                                    | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Indeno(1,2,3-cd)pyrene                                                                                                                            | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Dibenzo(a&h)anthracene                                                                                                                            | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Benzo(ghi)perylene                                                                                                                                | mg/kg          | 0.1 | <0.1         | <0.1              | 200          | 0      |
|                  |                        |                 | Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>200</td><td>0</td></lor=0*<>        | TEQ (mg/kg)    | 0.2 | <0.2         | <0.2              | 200          | 0      |
|                  |                        |                 | Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>134</td><td>0</td></lor=lor*<>    | TEQ (mg/kg)    | 0.3 | <0.3         | <0.3              | 134          | 0      |
|                  |                        |                 | Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>175</td><td>0</td></lor=lor> | TEQ (mg/kg)    | 0.2 | <0.2         | <0.2              | 175          | 0      |
|                  |                        |                 | Total PAH                                                                                                                                         | mg/kg          | 0.8 | <0.8         | <0.8              | 200          | 0      |
|                  |                        | Surrogates      | d5-nitrobenzene (Surrogate)                                                                                                                       | mg/kg          | -   | 0.4          | 0.4               | 30           | 2      |
|                  |                        |                 | 2-fluorobiphenyl (Surrogate)                                                                                                                      | mg/kg          | -   | 0.5          | 0.5               | 30           | 2      |
|                  |                        |                 | d14-p-terphenyl (Surrogate)                                                                                                                       | mg/kg          | -   | 0.5          | 0.5               | 30           | 2      |
| otal Recoverable | Metals in Soil by ICPC | ES from EPA 200 | 0.8 Digest                                                                                                                                        |                |     |              | Method: ME        | (AU)-[ENV]A  | N040/A |
| Driginal         | Duplicate              |                 | Parameter                                                                                                                                         | Units          | LOR | Original     | Duplicate         | Criteria %   | RPD    |
| SE137450.010     | LB074444.014           |                 | Arsenic, As                                                                                                                                       | mg/kg          | 1   | 2            | 1                 | 85           | 38     |
|                  |                        |                 | Beryllium, Be                                                                                                                                     | mg/kg          | 0.5 | < 0.5        | <0.5              | 144          | 0      |
|                  |                        |                 | Boron, B                                                                                                                                          | mg/kg          | 5   | <5           | <5                | 200          | 0      |
|                  |                        |                 | Cadmium, Cd                                                                                                                                       | mg/kg          | 0.3 | <0.3         | <0.3              | 200          | 0      |
|                  |                        |                 | Chromium, Cr                                                                                                                                      | mg/kg          | 0.5 | 13           | 13                | 34           | 6      |
|                  |                        |                 | Cobalt, Co                                                                                                                                        |                | 0.5 | 4.2          | 5.0               | 41           | 16     |
|                  |                        |                 | Copper, Cu                                                                                                                                        | mg/kg<br>mg/kg | 0.5 | 3.6          | 3.4               | 44           | 6      |
|                  |                        |                 |                                                                                                                                                   |                |     |              |                   | 39           | 5      |
|                  |                        |                 | Lead, Pb                                                                                                                                          | mg/kg          | 1   | 12           | 11                |              |        |
|                  |                        |                 | Manganese, Mn                                                                                                                                     | mg/kg          | 1   | 400          | 390               | 30           | 3      |
|                  |                        |                 | Nickel, Ni                                                                                                                                        | mg/kg          | 0.5 | 2.3          | 2.3               | 52           | 1      |
|                  |                        |                 | Selenium, Se                                                                                                                                      | mg/kg          | 3   | <3           | <3                | 200          | 0      |
|                  |                        |                 | Zinc, Zn                                                                                                                                          | mg/kg          | 2   | 8            | 8                 | 56           | 1      |
| SE137500.004     | LB074444.024           |                 | Arsenic, As                                                                                                                                       | mg/kg          | 1   |              | 96.0868369534     | 47           | 3      |
|                  |                        |                 | Cadmium, Cd                                                                                                                                       | mg/kg          | 0.3 |              | 40.3448758976     |              | 6      |
|                  |                        |                 | Chromium, Cr                                                                                                                                      | mg/kg          | 0.5 | 17.951996896 | 648.966878720     |              | 5      |
|                  |                        |                 | Copper, Cu                                                                                                                                        | mg/kg          | 0.5 | 16.671827076 | 596.870911767     |              | 1      |
|                  |                        |                 | Lead, Pb                                                                                                                                          | mg/kg          | 1   | 23.627741403 | 3723.8811513720   | 34           | 1      |
|                  |                        |                 | Nickel, Ni                                                                                                                                        | mg/kg          | 0.5 | 9.885792726  | 79.2497858604     | 35           | 7      |
|                  |                        |                 | Zinc, Zn                                                                                                                                          | mg/kg          | 2   | 14.211297364 | 15.069886744      | 1 34         | 2      |
| RH (Total Recove | erable Hydrocarbons) i | n Soll          |                                                                                                                                                   |                |     |              | Meth              | od: ME-(AU)- | [ENV]A |
| Original         | Duplicate              |                 | Parameter                                                                                                                                         | Units          | LOR | Original     | Dup <u>licate</u> | Criteria %   | RPD    |
| SE137450.004     | LB074380.009           |                 | TRH C10-C14                                                                                                                                       | mg/kg          | 20  | <20          | <20               | 200          | 0      |
|                  |                        |                 | TRH C15-C28                                                                                                                                       | mg/kg          | 45  | <45          | <45               | 200          | 0      |
|                  |                        |                 | TRH C29-C36                                                                                                                                       | mg/kg          | 45  | <45          | <45               | 200          | 0      |
|                  |                        |                 | TRH C37-C40                                                                                                                                       | mg/kg          | 100 | <100         | <100              | 200          | 0      |
|                  |                        |                 | TRH C10-C36 Total                                                                                                                                 | mg/kg          | 110 | <110         | <110              | 200          | 0      |
|                  |                        |                 | TRH C10-C40 Total                                                                                                                                 | mg/kg          | 210 | <210         | <210              | 200          | 0      |
|                  |                        | TRH F Bands     | TRH >C10-C16 (F2)                                                                                                                                 |                | 210 | <210         | <210              | 200          | 0      |
|                  |                        | intri Dallus    |                                                                                                                                                   | mg/kg          | 25  | <25          | <25               | 200          | 0      |
|                  |                        |                 | TRH >C10-C16 (F2) - Naphthalene                                                                                                                   | mg/kg          |     |              |                   |              |        |
|                  |                        |                 | TRH >C16-C34 (F3)                                                                                                                                 | mg/kg          | 90  | <90          | <90               | 200          | 0      |
|                  |                        |                 | TRH >C34-C40 (F4)                                                                                                                                 | mg/kg          | 120 | <120         | <120              | 200          | 0      |
| OC's in Soil     |                        |                 |                                                                                                                                                   |                |     |              | Method: ME        | (AU)-[ENV]A  | N433/A |
|                  |                        |                 |                                                                                                                                                   |                |     |              |                   |              |        |



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| OC's in Soil (conti |                     |             | Devenuedar                        | 11-4- |     | Original |               | -(AU)-[ENV]A |         |
|---------------------|---------------------|-------------|-----------------------------------|-------|-----|----------|---------------|--------------|---------|
| Original            | Duplicate           |             | Parameter                         | Units | LOR | Original | _             | Criteria %   | RPD %   |
| SE137450.008        | LB074326.014        | Monocyclic  | Benzene                           | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     | Aromatic    | Toluene                           | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     |             | Ethylbenzene                      | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     |             | m/p-xylene                        | mg/kg | 0.2 | <0.2     | <0.2          | 200          | 0       |
|                     |                     |             | o-xylene                          | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     | Polycyclic  | Naphthalene                       | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     | Surrogates  | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.1      | 4.0           | 50           | 2       |
|                     |                     |             | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.8      | 5.6           | 50           | 5       |
|                     |                     |             | d8-toluene (Surrogate)            | mg/kg | -   | 3.7      | 3.7           | 50           | 1       |
|                     |                     |             | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.2      | 4.1           | 50           | 3       |
|                     |                     | Totals      | Total Xylenes*                    | mg/kg | 0.3 | <0.3     | <0.3          | 200          | 0       |
|                     |                     |             | Total BTEX*                       | mg/kg | 0.6 | <0.6     | <0.6          | 200          | 0       |
| SE137459.003        | LB074326.021        | Monocyclic  | Benzene                           | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     | Aromatic    | Toluene                           | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     |             | Ethylbenzene                      | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     |             | m/p-xylene                        | mg/kg | 0.2 | <0.2     | <0.2          | 200          | 0       |
|                     |                     |             | o-xylene                          | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     | Polycyclic  | Naphthalene                       | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     | Surrogates  | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.9      | 3.8           | 50           | 3       |
|                     |                     |             | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.1      | 5.6           | 50           | 9       |
|                     |                     |             | d8-toluene (Surrogate)            | mg/kg | -   | 3.9      | 3.6           | 50           | 8       |
|                     |                     |             | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.2      | 4.2           | 50           | 0       |
|                     |                     | Totals      | Total Xylenes*                    | mg/kg | 0.3 | <0.3     | <0.3          | 200          | 0       |
|                     |                     |             | Total BTEX*                       | mg/kg | 0.6 | <0.6     | <0.6          | 200          | 0       |
| olatile Petroleum   | Hydrocarbons in Soi | i           |                                   |       |     | Metho    | d: ME-(AU)-[E | ENVJAN433/A  | N434/AI |
| Original            | Duplicate           |             | Parameter                         | Units | LOR | Original | Duplicate     | Criteria %   | RPD     |
| SE137450.008        | LB074326.014        |             | TRH C6-C10                        | mg/kg | 25  | <25      | <25           | 200          | 0       |
|                     |                     |             | TRH C6-C9                         | mg/kg | 20  | <20      | <20           | 200          | 0       |
|                     |                     | Surrogates  | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.1      | 4.0           | 30           | 2       |
|                     |                     |             | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.8      | 5.6           | 30           | 5       |
|                     |                     |             | d8-toluene (Surrogate)            | mg/kg | -   | 3.7      | 3.7           | 30           | 1       |
|                     |                     |             | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.2      | 4.1           | 30           | 3       |
|                     |                     | VPH F Bands | Benzene (F0)                      | mg/kg | 0.1 | <0.1     | <0.1          | 200          | 0       |
|                     |                     |             | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25      | <25           | 200          | 0       |
| SE137459.003        | LB074326.021        |             | TRH C6-C10                        | mg/kg | 25  | <25      | <25           | 200          | 0       |
|                     |                     |             | TRH C6-C9                         | mg/kg | 20  | <20      | <20           | 200          | 0       |
|                     |                     | Surrogates  | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.9      | 3.8           | 30           | 3       |
|                     |                     |             |                                   | mg/kg | _   | 5.1      | 5.6           | 30           | 9       |
|                     |                     |             |                                   |       |     |          |               |              |         |
|                     |                     |             | d4-1,2-dichloroethane (Surrogate) |       | -   |          |               |              |         |
|                     |                     |             | d8-toluene (Surrogate)            | mg/kg | -   | 3.9      | 3.6           | 30           | 8       |
|                     |                     | VPH F Bands |                                   |       | 0.1 |          |               |              |         |



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| Mercury in Soil |           |       |      |        | 1        | Nethod: ME-(A | U)-[ENV]AN312 |
|-----------------|-----------|-------|------|--------|----------|---------------|---------------|
| Sample Number   | Parameter | Units | LOR  | Result | Expected | Criteria %    | Recovery %    |
| LB074476.002    | Mercury   | mg/kg | 0.01 | 0.21   | 0.2      | 70 - 130      | 107           |
|                 |           |       |      |        |          |               |               |

|                                   | Poromotor                               | Linite |     | Docult | Expected | Critorio 0/   | Doorwoon   |
|-----------------------------------|-----------------------------------------|--------|-----|--------|----------|---------------|------------|
| Sample Number                     | Parameter                               | Units  | LOR | Result | Expected |               |            |
| .B074380.002                      | Heptachlor                              | mg/kg  | 0.1 | 0.2    | 0.2      | 60 - 140      | 116        |
|                                   | Aldrin                                  | mg/kg  | 0.1 | 0.2    | 0.2      | 60 - 140      | 114        |
|                                   | Delta BHC                               | mg/kg  | 0.1 | 0.2    | 0.2      | 60 - 140      | 104        |
|                                   | Dieldrin                                | mg/kg  | 0.2 | 0.2    | 0.2      | 60 - 140      | 111        |
|                                   | Endrin                                  | mg/kg  | 0.2 | 0.2    | 0.2      | 60 - 140      | 118        |
| Currentee                         | p,p'-DDT                                | mg/kg  | 0.1 | 0.2    | 0.2      | 60 - 140      | 116        |
| Surrogates                        | Tetrachloro-m-xylene (TCMX) (Surrogate) | mg/kg  | -   | 0.16   | 0.15     | 40 - 130      | 109        |
| P Pesticides in Soil              |                                         |        |     |        | Method:  | ME-(AU)-[EN\  | /JAN400/AN |
| Sample Number                     | Parameter                               | Units  | LOR | Result | Expected | Criteria %    | Recovery   |
| B074380.002                       | Dichlorvos                              | mg/kg  | 0.5 | 1.9    | 2        | 60 - 140      | 97         |
|                                   | Diazinon (Dimpylate)                    | mg/kg  | 0.5 | 2.4    | 2        | 60 - 140      | 122        |
|                                   | Chlorpyrifos (Chlorpyrifos Ethyl)       | mg/kg  | 0.2 | 2.0    | 2        | 60 - 140      | 101        |
|                                   | Ethion                                  | mg/kg  | 0.2 | 2.2    | 2        | 60 - 140      | 109        |
| Surrogates                        | 2-fluorobiphenyl (Surrogate)            | mg/kg  | -   | 0.4    | 0.5      | 40 - 130      | 82         |
|                                   | d14-p-terphenyl (Surrogate)             | mg/kg  | -   | 0.5    | 0.5      | 40 - 130      | 98         |
| AH (Polynuclear Aromatic Hydro    | carbons) in Soil                        |        |     |        |          | Method: ME-(A |            |
| Sample Number                     | Parameter                               | Units  | LOR | Result | Expected | Criteria %    | Recovery   |
| B074380.002                       | Naphthalene                             | mg/kg  | 0.1 | 4.6    | 4        | 60 - 140      | 114        |
| B074380.002                       | •                                       |        | 0.1 | 4.0    | 4        | 60 - 140      | 109        |
|                                   | Accenaphthylene                         | mg/kg  |     |        |          |               |            |
|                                   | Acenaphthene                            | mg/kg  | 0.1 | 4.6    | 4        | 60 - 140      | 115        |
|                                   | Phenanthrene                            | mg/kg  | 0.1 | 4.7    | 4        | 60 - 140      | 117        |
|                                   | Anthracene                              | mg/kg  | 0.1 | 4.6    | 4        | 60 - 140      | 115        |
|                                   | Fluoranthene                            | mg/kg  | 0.1 | 4.7    | 4        | 60 - 140      | 118        |
|                                   | Pyrene                                  | mg/kg  | 0.1 | 4.6    | 4        | 60 - 140      | 115        |
|                                   | Benzo(a)pyrene                          | mg/kg  | 0.1 | 4.4    | 4        | 60 - 140      | 111        |
| Surrogates                        | d5-nitrobenzene (Surrogate)             | mg/kg  | -   | 0.4    | 0.5      | 40 - 130      | 82         |
|                                   | 2-fluorobiphenyl (Surrogate)            | mg/kg  | -   | 0.4    | 0.5      | 40 - 130      | 82         |
|                                   | d14-p-terphenyl (Surrogate)             | mg/kg  | -   | 0.5    | 0.5      | 40 - 130      | 98         |
| otal Recoverable Metals in Soil I | by ICPOES from EPA 200.8 Digest         |        |     |        | Method:  | ME-(AU)-[EN\  | /JAN040/AI |
| Sample Number                     | Parameter                               | Units  | LOR | Result | Expected | Criteria %    | Recovery   |
| .B074444.002                      | Arsenic, As                             | mg/kg  | 1   | 48     | 50       | 80 - 120      | 96         |
|                                   | Beryllium, Be                           | mg/kg  | 0.5 | 48     | 50       | 80 - 120      | 97         |
|                                   | Boron, B                                | mg/kg  | 5   | 46     | 50       | 80 - 120      | 93         |
|                                   | Cadmium, Cd                             | mg/kg  | 0.3 | 47     | 50       | 80 - 120      | 94         |
|                                   | Chromium, Cr                            | mg/kg  | 0.5 | 47     | 50       | 80 - 120      | 95         |
|                                   | Cobalt, Co                              |        | 0.5 | 48     | 50       | 80 - 120      | 96         |
|                                   |                                         | mg/kg  |     |        |          |               |            |
|                                   | Copper, Cu                              | mg/kg  | 0.5 | 50     | 50       | 80 - 120      | 100        |
|                                   | Lead, Pb                                | mg/kg  | 1   | 48     | 50       | 80 - 120      | 97         |
|                                   | Manganese, Mn                           | mg/kg  | 1   | 48     | 50       | 80 - 120      | 96         |
|                                   | Nickel, Ni                              | mg/kg  | 0.5 | 48     | 50       | 80 - 120      | 96         |
|                                   | Selenium, Se                            | mg/kg  | 3   | 48     | 50       | 80 - 120      | 95         |
|                                   | Zinc, Zn                                | mg/kg  | 2   | 48     | 50       | 80 - 120      | 97         |
| RH (Total Recoverable Hydroca     | rbons) in Soil                          |        |     |        | l I      | Method: ME-(A | U)-[ENV]AI |
| Sample Number                     | Parameter                               | Units  | LOR | Result | Expected | Criteria %    | Recovery   |
| B074380.002                       | TRH C10-C14                             | mg/kg  | 20  | 40     | 40       | 60 - 140      | 100        |
|                                   | TRH C15-C28                             | mg/kg  | 45  | <45    | 40       | 60 - 140      | 100        |
|                                   | TRH C29-C36                             | mg/kg  | 45  | <45    | 40       | 60 - 140      | 85         |
| TRH F Bands                       |                                         | mg/kg  | 25  | 40     | 40       | 60 - 140      | 100        |
| IKH F Banos                       |                                         |        |     |        |          |               |            |
|                                   | TRH >C16-C34 (F3)                       | mg/kg  | 90  | <90    | 40       | 60 - 140      | 95         |
|                                   | TRH >C34-C40 (F4)                       | mg/kg  | 120 | <120   | 20       | 60 - 140      | 85         |
| OC's in Soil                      |                                         |        |     |        | Method:  | ME-(AU)-[EN\  | /JAN433/AI |
|                                   |                                         |        |     |        |          |               |            |



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| VOC's in Soil (cor | itinued)          |                                   |       |     |        | Method:        | ME-(AU)-[EN\ | /JAN433/AN43 |
|--------------------|-------------------|-----------------------------------|-------|-----|--------|----------------|--------------|--------------|
| Sample Number      | r                 | Parameter                         | Units | LOR | Result | Expected       | Criteria %   | Recovery %   |
| LB074326.002       | Monocyclic        | Benzene                           | mg/kg | 0.1 | 2.2    | 2.9            | 60 - 140     | 76           |
|                    | Aromatic          | Toluene                           | mg/kg | 0.1 | 2.2    | 2.9            | 60 - 140     | 76           |
|                    |                   | Ethylbenzene                      | mg/kg | 0.1 | 2.5    | 2.9            | 60 - 140     | 84           |
|                    |                   | m/p-xylene                        | mg/kg | 0.2 | 5.0    | 5.8            | 60 - 140     | 87           |
|                    |                   | o-xylene                          | mg/kg | 0.1 | 2.3    | 2.9            | 60 - 140     | 80           |
|                    | Surrogates        | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.3    | 5              | 60 - 140     | 86           |
|                    |                   | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.8    | 5              | 60 - 140     | 117          |
|                    |                   | d8-toluene (Surrogate)            | mg/kg | -   | 5.2    | 5              | 60 - 140     | 104          |
|                    |                   | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 5.1    | 5              | 60 - 140     | 102          |
| Volatile Petroleum | Hydrocarbons in S | Soil                              |       |     | I      | Method: ME-(Al | J)-[ENV]AN43 | 3/AN434/AN4  |
| Sample Number      | r                 | Parameter                         | Units | LOR | Result | Expected       | Criteria %   | Recovery %   |
| LB074326.002       |                   | TRH C6-C10                        | mg/kg | 25  | <25    | 24.65          | 60 - 140     | 87           |
|                    |                   | TRH C6-C9                         | mg/kg | 20  | <20    | 23.2           | 60 - 140     | 84           |
|                    | Surrogates        | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.3    | 5              | 60 - 140     | 86           |
|                    |                   | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.8    | 5              | 60 - 140     | 117          |
|                    |                   | d8-toluene (Surrogate)            | mg/kg | -   | 5.2    | 5              | 60 - 140     | 104          |
|                    |                   | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 5.1    | 5              | 60 - 140     | 102          |
|                    | VPH F Bands       | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25    | 7.25           | 60 - 140     | 99           |



### **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| Mercury in Soil |               |           |       |      |        | Met      | hod: ME-(AL | J)-[ENV]AN312 |
|-----------------|---------------|-----------|-------|------|--------|----------|-------------|---------------|
| QC Sample       | Sample Number | Parameter | Units | LOR  | Result | Original | Spike       | Recovery%     |
| SE137450.001    | LB074476.004  | Mercury   | mg/kg | 0.01 | 0.20   | 0.01     | 0.2         | 91            |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil

| QC Sample      | Sample Number            |               | Parameter                                                                                                                                   | Units       | LOR | Result | Original   | Spike      | Recovery%     |
|----------------|--------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------|------------|------------|---------------|
| SE137450.003   | LB074380.007             |               | Naphthalene                                                                                                                                 | mg/kg       | 0.1 | 4.0    | <0.1       | 4          | 99            |
|                |                          |               | 2-methylnaphthalene                                                                                                                         | mg/kg       | 0.1 | <0.1   | <0.1       | -          | -             |
|                |                          |               | 1-methylnaphthalene                                                                                                                         | mg/kg       | 0.1 | <0.1   | <0.1       | -          | -             |
|                |                          |               | Acenaphthylene                                                                                                                              | mg/kg       | 0.1 | 3.8    | <0.1       | 4          | 95            |
|                |                          |               | Acenaphthene                                                                                                                                | mg/kg       | 0.1 | 4.1    | <0.1       | 4          | 102           |
|                |                          |               | Fluorene                                                                                                                                    | mg/kg       | 0.1 | <0.1   | <0.1       | -          |               |
|                |                          |               | Phenanthrene                                                                                                                                | mg/kg       | 0.1 | 3.9    | <0.1       | 4          | 98            |
|                |                          |               | Anthracene                                                                                                                                  | mg/kg       | 0.1 | 4.0    | <0.1       | 4          | 99            |
|                |                          |               | Fluoranthene                                                                                                                                | mg/kg       | 0.1 | 3.9    | <0.1       | 4          | 98            |
|                |                          |               | Pyrene                                                                                                                                      | mg/kg       | 0.1 | 3.9    | <0.1       | 4          | 97            |
|                |                          |               | Benzo(a)anthracene                                                                                                                          | mg/kg       | 0.1 | <0.1   | <0.1       | -          | -             |
|                |                          |               | Chrysene                                                                                                                                    | mg/kg       | 0.1 | <0.1   | <0.1       | -          | _             |
|                |                          |               | Benzo(b&j)fluoranthene                                                                                                                      | mg/kg       | 0.1 | <0.1   | <0.1       | _          |               |
|                |                          |               | Benzo(k)fluoranthene                                                                                                                        | mg/kg       | 0.1 | <0.1   | <0.1       | -          |               |
|                |                          |               |                                                                                                                                             |             | 0.1 | 4.7    | <0.1       | 4          | - 117         |
|                |                          |               | Benzo(a)pyrene                                                                                                                              | mg/kg       | 0.1 | <0.1   | <0.1       | -          | -             |
|                |                          |               | Indeno(1,2,3-cd)pyrene                                                                                                                      | mg/kg       |     |        | <0.1       | -          |               |
|                |                          |               | Dibenzo(a&h)anthracene                                                                                                                      | mg/kg       | 0.1 | <0.1   |            |            |               |
|                |                          |               | Benzo(ghi)perylene                                                                                                                          | mg/kg       | 0.1 | <0.1   | <0.1       | -          | -             |
|                |                          |               | Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>4.7</td><td>&lt;0.2</td><td>-</td><td>-</td></lor=0*<>                | TEQ         | 0.2 | 4.7    | <0.2       | -          | -             |
|                |                          |               | Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.8</td><td>&lt;0.3</td><td>-</td><td>-</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | 4.8    | <0.3       | -          | -             |
|                |                          |               | Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.8</td><td>&lt;0.2</td><td>-</td><td>-</td></lor=lor> | TEQ (mg/kg) | 0.2 | 4.8    | <0.2       | -          | -             |
|                |                          |               | Total PAH                                                                                                                                   | mg/kg       | 0.8 | 32     | <0.8       | -          | -             |
|                |                          | Surrogates    | d5-nitrobenzene (Surrogate)                                                                                                                 | mg/kg       | -   | 0.4    | 0.4        | -          | 86            |
|                |                          |               | 2-fluorobiphenyl (Surrogate)                                                                                                                | mg/kg       | -   | 0.4    | 0.4        | -          | 88            |
|                |                          |               | d14-p-terphenyl (Surrogate)                                                                                                                 | mg/kg       | -   | 0.5    | 0.5        | -          | 96            |
| otal Recoverab | le Metals in Soil by ICI | POES from EPA | 200.8 Digest                                                                                                                                |             |     |        | Method: ME | -(AU)-[ENV | JAN040/AN32   |
| QC Sample      | Sample Number            |               | Parameter                                                                                                                                   | Units       | LOR | Result | Original   | Spike      | Recovery?     |
| SE137450.001   | LB074444.004             |               | Arsenic, As                                                                                                                                 | mg/kg       | 1   | 40     | 2          | 50         | 77            |
|                |                          |               | Beryllium, Be                                                                                                                               | mg/kg       | 0.5 | 2.5    | <0.5       | 2.5        | 82            |
|                |                          |               | Boron, B                                                                                                                                    | mg/kg       | 5   | 13     | <5         | 10         | 129           |
|                |                          |               | Cadmium, Cd                                                                                                                                 | mg/kg       | 0.3 | 40     | <0.3       | 50         | 79            |
|                |                          |               | Chromium, Cr                                                                                                                                | mg/kg       | 0.5 | 48     | 8.3        | 50         | 80            |
|                |                          |               | Cobalt, Co                                                                                                                                  | mg/kg       | 0.5 | 45     | 3.8        | 50         | 82            |
|                |                          |               | Copper, Cu                                                                                                                                  | mg/kg       | 0.5 | 48     | 4.2        | 50         | 88            |
|                |                          |               | Lead, Pb                                                                                                                                    | mg/kg       | 1   | 52     | 12         | 50         | 81            |
|                |                          |               | Manganese, Mn                                                                                                                               | mg/kg       | 1   | 330    | 290        | 50         | 66 (5)        |
|                |                          |               | Nickel, Ni                                                                                                                                  | mg/kg       | 0.5 | 43     | 2.5        | 50         | 82            |
|                |                          |               | Selenium, Se                                                                                                                                | mg/kg       | 3   | 13     | <3         | 10         | 130           |
|                |                          |               | Zinc, Zn                                                                                                                                    | mg/kg       | 2   | 55     | 12         | 50         | 87            |
| DH (Total Daga | warable Hudrooarbona     | ) in Coll     |                                                                                                                                             |             |     |        |            |            | J)-[ENV]AN40  |
|                | verable Hydrocarbons     | 5) IN 301     |                                                                                                                                             |             |     |        |            |            |               |
| QC Sample      | Sample Number            |               | Parameter                                                                                                                                   | Units       | LOR | Result | Original   | Spike      | Recovery      |
| SE137450.003   | LB074380.007             |               | TRH C10-C14                                                                                                                                 | mg/kg       | 20  | 40     | <20        | 40         | 100           |
|                |                          |               | TRH C15-C28                                                                                                                                 | mg/kg       | 45  | <45    | <45        | 40         | 95            |
|                |                          |               | TRH C29-C36                                                                                                                                 | mg/kg       | 45  | <45    | <45        | 40         | 85            |
|                |                          |               | TDU 007 040                                                                                                                                 | mg/kg       | 100 | <100   | <100       | -          |               |
|                |                          |               | TRH C37-C40                                                                                                                                 | Tilg/kg     | 100 | 100    | <100       | -          | -             |
|                |                          |               | TRH C37-C40 TRH C10-C36 Total                                                                                                               | mg/kg       | 110 | 110    | <110       | -          | -             |
|                |                          |               |                                                                                                                                             |             |     |        |            |            | -             |
|                |                          | TRH F Bands   | TRH C10-C36 Total                                                                                                                           | mg/kg       | 110 | 110    | <110       | -          | -<br>-<br>100 |

TRH >C10-C16 (F2) - Naphthalene

TRH >C16-C34 (F3)

TRH >C34-C40 (F4)

Parameter

40

<25

<90

<120

25

90

120

LOR

mg/kg

mg/kg

mg/kg

Units

40

<90

<120

VOC's in Soil

QC Sample Sample Number

93



## **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| OC's in Soil (co | ntinuea)          |            |                                   |       |     |        | Method: ME      | -(AU)-[ENV | JAN433/AN43 |
|------------------|-------------------|------------|-----------------------------------|-------|-----|--------|-----------------|------------|-------------|
| QC Sample        | Sample Numbe      | ə <b>r</b> | Parameter                         | Units | LOR | Result | Original        | Spike      | Recovery    |
| E137435.001      | LB074326.004      | Monocyclic | Benzene                           | mg/kg | 0.1 | 2.2    | <0.1            | 2.9        | 76          |
|                  |                   | Aromatic   | Toluene                           | mg/kg | 0.1 | 2.2    | <0.1            | 2.9        | 76          |
|                  |                   |            | Ethylbenzene                      | mg/kg | 0.1 | 2.5    | <0.1            | 2.9        | 87          |
|                  |                   |            | m/p-xylene                        | mg/kg | 0.2 | 5.2    | <0.2            | 5.8        | 90          |
|                  |                   |            | o-xylene                          | mg/kg | 0.1 | 2.5    | <0.1            | 2.9        | 86          |
|                  |                   | Polycyclic | Naphthalene                       | mg/kg | 0.1 | <0.1   | <0.1            | -          | -           |
|                  |                   | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.8    | 3.8             | 5          | 76          |
|                  |                   |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.8    | 4.4             | 5          | 97          |
|                  |                   |            | d8-toluene (Surrogate)            | mg/kg | -   | 4.0    | 3.6             | 5          | 79          |
|                  |                   |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.8    | 4.3             | 5          | 96          |
|                  |                   | Totals     | Total Xylenes*                    | mg/kg | 0.3 | 7.7    | <0.3            | -          | -           |
|                  |                   |            | Total BTEX*                       | mg/kg | 0.6 | 15     | <0.6            | -          | -           |
| olatile Petroleu | m Hydrocarbons in | Soil       |                                   |       |     | Meth   | nod: ME-(AU)-[l | ENVJAN433  | /AN434/AN4  |
| QC Sample        | Sample Numbe      | ər         | Parameter                         | Units | LOR | Result | Original        | Spike      | Recover     |
| E137435.001      | LB074326.004      |            | TRH C6-C10                        | mg/kg | 25  | <25    | <25             | 24.65      | 91          |
|                  |                   |            | TRH C6-C9                         | mg/kg | 20  | <20    | <20             | 23.2       | 77          |
|                  |                   | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.8    | 3.8             | 5          | 76          |
|                  |                   |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.8    | 4.4             | 5          | 97          |
|                  |                   |            | d8-toluene (Surrogate)            | mg/kg | -   | 4.0    | 3.6             | 5          | 79          |
|                  |                   |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.8    | 4.3             | 5          | 96          |
|                  |                   | VPH F      | Benzene (F0)                      | mg/kg | 0.1 | 2.2    | <0.1            | -          | -           |
|                  |                   | Bands      | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25    | <25             | 7.25       | 110         |



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- \* Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- IOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

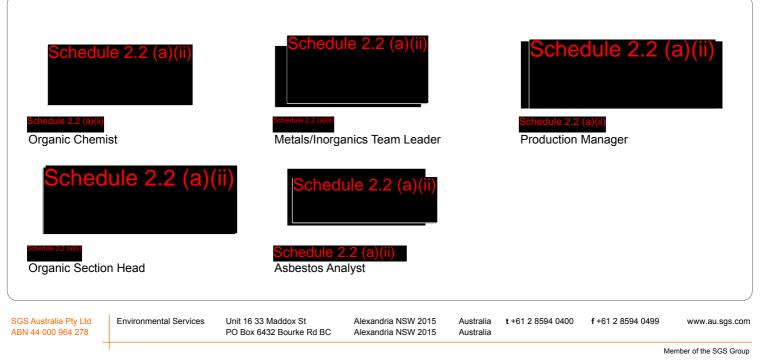
This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.






| - CLIENT DETAILS |                                                                              | LABORATORY DETAI | LS                                           |
|------------------|------------------------------------------------------------------------------|------------------|----------------------------------------------|
| Contact          | Schedule 2.2 (a)(ii)                                                         | Manager          | Schedule 2.2 (a)(ii)                         |
| Client           | SMEC Australia Pty Ltd - ACT                                                 | Laboratory       | SGS Alexandria Environmental                 |
| Address          | Sun Micro Building<br>Suite 2, Level 1<br>243 Northbourne Avenue<br>ACT 2602 | Address          | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone        | Schedule 2.2 (a)(ii)                                                         | Telephone        | Schedule 2.2 (a)(ii)                         |
| Facsimile        | Schedule 2.2 (a)(ii)                                                         | Facsimile        | Schedule 2.2 (a)(ii)                         |
| Email            | Schedule 2.2 (a)(ii)                                                         | Email            | au.environmental.sydney@sgs.com              |
| Project          | 3002402 - Isabella Weir                                                      | SGS Reference    | SE137450 R0                                  |
| Order Number     | 03380342                                                                     | Report Number    | 0000106321                                   |
| Samples          | 11                                                                           | Date Reported    | 27 Mar 2015                                  |
|                  |                                                                              | Date Received    | 20 Mar 2015                                  |

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

Sample # 3,5,6 : portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container. No respirable fibres detected in all samples using trace analysis technique. Sample # 7 :1-7 mm length fibre bundles found in approx 7x4 cement sheet fragments.

SIGNATORIES

Asbestos analysed by Approved Identifiers





| Fibre Identifica        | tion in soil        |        |                          |              | Method AN602                                                   |          |
|-------------------------|---------------------|--------|--------------------------|--------------|----------------------------------------------------------------|----------|
| Laboratory<br>Reference | Client<br>Reference | Matrix | Sample<br>Description    | Date Sampled | Fibre Identification                                           | Est.%w/w |
| SE137450.001            | TP01_0.1-0.2        | Soil   | 548 g clay,sand<br>rocks | 18 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.002            | TP02_0.5-0.6        | Soil   | 540 g clay,sand<br>rocks | 18 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.003            | TP03_1.0-1.1        | Soil   | 88 g clay,sand<br>rocks  | 18 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.004            | TP04_0.1-0.2        | Soil   | 446 g clay,sand<br>rocks | 18 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.005            | TP05_2.0-2.2        | Soil   | 63 g clay,sand<br>rocks  | 18 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.006            | TP06_3.0-3.1        | Soil   | 74 g clay,sand<br>rocks  | 18 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.007            | TP07_1.0-1.2        | Soil   | 558 g clay,sand<br>rocks | 19 Mar 2015  | Amosite & Chrysotile Asbestos Found<br>Organic Fibres Detected | >0.01    |
| SE137450.008            | TP08_1.1-1.2        | Soil   | 602 g clay,sand<br>rocks | 19 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.009            | TP09_0.4-0.5        | Soil   | 575 g clay,sand<br>rocks | 19 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |
| SE137450.010            | TP10_0.1-0.2        | Soil   | 620 g clay,sand<br>rocks | 19 Mar 2015  | No Asbestos Found<br>Organic Fibres Detected                   | <0.01    |



| RESULTS -               | < materials         |        |                                           |              | Method AN602                           |
|-------------------------|---------------------|--------|-------------------------------------------|--------------|----------------------------------------|
| Laboratory<br>Reference | Client<br>Reference | Matrix | Sample<br>Description                     | Date Sampled | Fibre Identification                   |
| SE137450.012            | Frag 01             | Other  | 290x150x25mm<br>Cement sheet<br>fragments |              | Amosite & Chrysotile Asbestos Detected |



## **METHOD SUMMARY**

| METHOD | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN002  | Weight of as received sample determined on a 2 decimal place balance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AN602  | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned. |
| AN602  | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AN602  | AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."                                                                                                                                                                                                                                                                                                 |
| AN602  | The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | <ul> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>                                                                                                                                                                                            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### FOOTNOTES -

| Amosite     | - | Brown Asbestos             | NA  | - | Not Analysed                                        |
|-------------|---|----------------------------|-----|---|-----------------------------------------------------|
| Chrysotile  | - | White Asbestos             | LNR | - | Listed, Not Required                                |
| Crocidolite | - | Blue Asbestos              | *   | - | Not Accredited                                      |
| Amphiboles  | - | Amosite and/or Crocidolite | **  | - | Indicative data, theoretical holding time exceeded. |

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

#### Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarized light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarized light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarized light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

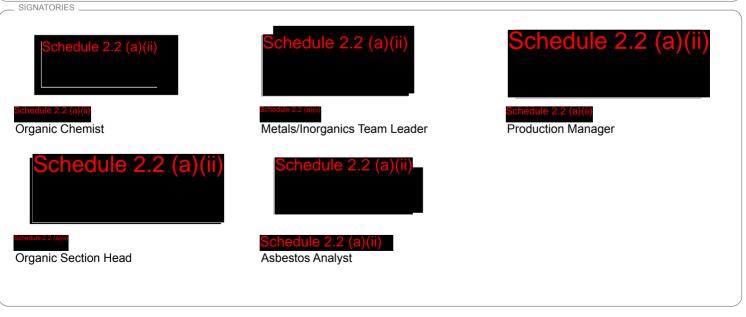
This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.






| - CLIENT DETAILS |                                                                              | LABORATORY DETAIL | S                                            |
|------------------|------------------------------------------------------------------------------|-------------------|----------------------------------------------|
| Contact          | Schedule 2.2 (a)(ii)                                                         | Manager           | Schedule 2.2 (a)(ii)                         |
| Client           | SMEC Australia Pty Ltd - ACT                                                 | Laboratory        | SGS Alexandria Environmental                 |
| Address          | Sun Micro Building<br>Suite 2, Level 1<br>243 Northbourne Avenue<br>ACT 2602 | Address           | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone        | Schedule 2.2 (a)(ii)                                                         | Telephone         | Schedule 2.2 (a)(ii)                         |
| Facsimile        | Schedule 2.2 (a)(ii)                                                         | Facsimile         | Schedule 2.2 (a)(ii)                         |
| Email            | Schedule 2.2 (a)(ii)                                                         | Email             | au.environmental.sydney@sgs.com              |
| Project          | 3002402 - Isabella Weir                                                      | SGS Reference     | SE137450 R0                                  |
| Order Number     | 03380342                                                                     | Report Number     | 0000106320                                   |
| Samples          | 12                                                                           | Date Reported     | 27 Mar 2015                                  |
| Date Started     | 25 Mar 2015                                                                  | Date Received     | 20 Mar 2015                                  |

COMMENTS \_

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

Sample # 3,5,6 : portion of the sample supplied has been sub-sampled for asbestos according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental Services recommends supplying approximately 50-100g of sample in a separate container. No respirable fibres detected in all samples using trace analysis technique. Sample # 7 :1-7 mm length fibre bundles found in approx 7x4 cement sheet fragments.

Asbestos analysed by Approved Identifiers



SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8 Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com



### SE137450 R0

|                                                                                         |          | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE137450.001<br>Soil<br>18 Mar 2015<br>TP01_0.1-0.2 | SE137450.002<br>Soil<br>18 Mar 2015<br>TP02_0.5-0.6 | SE137450.003<br>Soil<br>18 Mar 2015<br>TP03_1.0-1.1 | SE137450.004<br>Soil<br>18 Mar 2015<br>TP04_0.1-0.2 |
|-----------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                               | Units    | LOR                                                          |                                                     |                                                     |                                                     |                                                     |
| VOC's in Soil Method: AN433/AN434 Tested: 23/3/2015<br>Monocyclic Aromatic Hydrocarbons |          |                                                              |                                                     |                                                     |                                                     |                                                     |
| Benzene                                                                                 | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Toluene                                                                                 | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Ethylbenzene                                                                            | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| m/p-xylene                                                                              | mg/kg    | 0.2                                                          | <0.2                                                | <0.2                                                | <0.2                                                | <0.2                                                |
| o-xylene                                                                                | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Naphthalene Surrogates                                                                  | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Dibromofluoromethane (Surrogate)                                                        | %        | -                                                            | 78                                                  | 79                                                  | 76                                                  | 74                                                  |
| d4-1,2-dichloroethane (Surrogate)                                                       | %        | -                                                            | 94                                                  | 93                                                  | 104                                                 | 97                                                  |
| d8-toluene (Surrogate)                                                                  | %        | -                                                            | 81                                                  | 78                                                  | 75                                                  | 72                                                  |
| Bromofluorobenzene (Surrogate)                                                          | %        | -                                                            | 78                                                  | 75                                                  | 81                                                  | 77                                                  |
| Totals                                                                                  |          |                                                              |                                                     |                                                     |                                                     |                                                     |
| Total Xylenes*                                                                          | mg/kg    | 0.3                                                          | <0.3                                                | <0.3                                                | <0.3                                                | <0.3                                                |
| Total BTEX*                                                                             | mg/kg    | 0.6                                                          | <0.6                                                | <0.6                                                | <0.6                                                | <0.6                                                |
| Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN4                               | 34/AN410 | Tested: 23/3/2                                               | 2015                                                |                                                     |                                                     |                                                     |
| TRH C6-C10                                                                              | mg/kg    | 25                                                           | <25                                                 | <25                                                 | <25                                                 | <25                                                 |
|                                                                                         |          |                                                              |                                                     |                                                     |                                                     |                                                     |

| TRH C6-C9         mg/kg         20         <20 | TRH C6-C10 | mg/kg | 25 | <25 | <25 | <25 | <25 |
|------------------------------------------------|------------|-------|----|-----|-----|-----|-----|
|                                                | TRH C6-C9  | mg/kg | 20 | <20 | <20 | <20 | <20 |

Surrogates

| Dibromofluoromethane (Surrogate)  | % | - | 78 | 79 | 76  | 74 |
|-----------------------------------|---|---|----|----|-----|----|
| d4-1,2-dichloroethane (Surrogate) | % | - | 94 | 93 | 104 | 97 |
| d8-toluene (Surrogate)            | % | - | 81 | 78 | 75  | 72 |
| Bromofluorobenzene (Surrogate)    | % | - | 78 | 75 | 81  | 77 |



### SE137450 R0

|                                                                           |         | ample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE137450.001<br>Soil<br>18 Mar 2015<br>TP01_0.1-0.2 | SE137450.002<br>Soil<br>18 Mar 2015<br>TP02_0.5-0.6 | SE137450.003<br>Soil<br>18 Mar 2015<br>TP03_1.0-1.1 | SE137450.004<br>Soil<br>18 Mar 2015<br>TP04_0.1-0.2 |
|---------------------------------------------------------------------------|---------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                 | Units   | LOR                                                         |                                                     |                                                     |                                                     |                                                     |
| Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN43<br>VPH F Bands | 4/AN410 | Tested: 23/3/2                                              | 2015 (continue                                      | d)                                                  |                                                     |                                                     |
| Benzene (F0)                                                              | mg/kg   | 0.1                                                         | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| TRH C6-C10 minus BTEX (F1)                                                | mg/kg   | 25                                                          | <25                                                 | <25                                                 | <25                                                 | <25                                                 |
| TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403                | Tested: | 24/3/2015                                                   |                                                     |                                                     |                                                     |                                                     |

| TRH C10-C14       | mg/kg | 20  | <20  | <20  | <20  | <20  |
|-------------------|-------|-----|------|------|------|------|
| TRH C15-C28       | mg/kg | 45  | <45  | <45  | <45  | <45  |
| TRH C29-C36       | mg/kg | 45  | <45  | <45  | <45  | <45  |
| TRH C37-C40       | mg/kg | 100 | <100 | <100 | <100 | <100 |
| TRH C10-C36 Total | mg/kg | 110 | <110 | <110 | <110 | <110 |
| TRH C10-C40 Total | mg/kg | 210 | <210 | <210 | <210 | <210 |

TRH F Bands

| TRH >C10-C16 (F2)               | mg/kg | 25  | <25  | <25  | <25  | <25  |
|---------------------------------|-------|-----|------|------|------|------|
| TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | <25  | <25  | <25  | <25  |
| TRH >C16-C34 (F3)               | mg/kg | 90  | <90  | <90  | <90  | <90  |
| TRH >C34-C40 (F4)               | mg/kg | 120 | <120 | <120 | <120 | <120 |

### PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420 Tested: 24/3/2015

| Naphthalene                                                                                                                                     | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|---|---|------|------|
| 2-methylnaphthalene                                                                                                                             | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| 1-methylnaphthalene                                                                                                                             | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Acenaphthylene                                                                                                                                  | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Acenaphthene                                                                                                                                    | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Fluorene                                                                                                                                        | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Phenanthrene                                                                                                                                    | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Anthracene                                                                                                                                      | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Fluoranthene                                                                                                                                    | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Pyrene                                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(a)anthracene                                                                                                                              | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Chrysene                                                                                                                                        | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(b&j)fluoranthene                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(k)fluoranthene                                                                                                                            | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(a)pyrene                                                                                                                                  | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Indeno(1,2,3-cd)pyrene                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Dibenzo(a&h)anthracene                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(ghi)perylene                                                                                                                              | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>-</td><td>-</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0*<>                | TEQ         | 0.2 | - | - | <0.2 | <0.2 |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td>-</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | - | - | <0.3 | <0.3 |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td>-</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor> | TEQ (mg/kg) | 0.2 | - | - | <0.2 | <0.2 |
| Total PAH                                                                                                                                       | mg/kg       | 0.8 | - | - | <0.8 | <0.8 |



### SE137450 R0

|                                                                          | Sa          | nple Number<br>ample Matrix<br>Sample Date<br>ample Name | Soil<br>18 Mar 2015 | SE137450.002<br>Soil<br>18 Mar 2015<br>TP02_0.5-0.6 | SE137450.003<br>Soil<br>18 Mar 2015<br>TP03_1.0-1.1 | SE137450.004<br>Soil<br>18 Mar 2015<br>TP04_0.1-0.2 |
|--------------------------------------------------------------------------|-------------|----------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                | Units       | LOR                                                      |                     |                                                     |                                                     |                                                     |
| PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN<br>Surrogates | 1420 Testec | d: 24/3/2015                                             | 5 (continued)       |                                                     |                                                     |                                                     |
| d5-nitrobenzene (Surrogate)                                              | %           | -                                                        | -                   | -                                                   | 86                                                  | 86                                                  |
| 2-fluorobiphenyl (Surrogate)                                             | %           | -                                                        | -                   | -                                                   | 88                                                  | 90                                                  |
| d14-p-terphenyl (Surrogate)                                              | %           | -                                                        | -                   | -                                                   | 98                                                  | 100                                                 |
| OC Pesticides in Soil Method: AN400/AN420 Tested: 24/3/20                | )15         |                                                          |                     |                                                     |                                                     | 1                                                   |
| Hexachlorobenzene (HCB)                                                  | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Alpha BHC                                                                | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Lindane                                                                  | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Heptachlor                                                               | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Aldrin                                                                   | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Beta BHC                                                                 | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Delta BHC                                                                | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Heptachlor epoxide                                                       | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| o,p'-DDE                                                                 | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Alpha Endosulfan                                                         | mg/kg       | 0.2                                                      | -                   | -                                                   | <0.2                                                | <0.2                                                |
| Gamma Chlordane                                                          | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Alpha Chlordane                                                          | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| trans-Nonachlor                                                          | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| p,p'-DDE                                                                 | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Dieldrin                                                                 | mg/kg       | 0.2                                                      | -                   | -                                                   | <0.2                                                | <0.2                                                |
| Endrin                                                                   | mg/kg       | 0.2                                                      | -                   | -                                                   | <0.2                                                | <0.2                                                |
| o,p'-DDD                                                                 | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| o,p'-DDT                                                                 | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Beta Endosulfan                                                          | mg/kg       | 0.2                                                      | -                   | -                                                   | <0.2                                                | <0.2                                                |
| p,p'-DDD                                                                 | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| p,p'-DDT                                                                 | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Endosulfan sulphate                                                      | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Endrin Aldehyde                                                          | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Methoxychlor                                                             | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Endrin Ketone                                                            | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Isodrin                                                                  | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |
| Mirex                                                                    | mg/kg       | 0.1                                                      | -                   | -                                                   | <0.1                                                | <0.1                                                |



### SE137450 R0

|                                     |                     |                   | Sa      | ple Number<br>Imple Matrix<br>Sample Date<br>Imple Name | Soil<br>18 Mar 2015 | SE137450.002<br>Soil<br>18 Mar 2015<br>TP02_0.5-0.6 | SE137450.003<br>Soil<br>18 Mar 2015<br>TP03_1.0-1.1 | SE137450.004<br>Soil<br>18 Mar 2015<br>TP04_0.1-0.2 |
|-------------------------------------|---------------------|-------------------|---------|---------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                           |                     |                   | Units   | LOR                                                     |                     |                                                     |                                                     |                                                     |
| OC Pesticides in Soil<br>Surrogates | Method: AN400/AN420 | Tested: 24/3/2015 | (contin | ued)                                                    |                     |                                                     |                                                     |                                                     |
| Tetrachloro-m-xylene (TCMX) (S      | Surrogate)          |                   | %       | -                                                       | -                   | -                                                   | 91                                                  | 110                                                 |

### OP Pesticides in Soil Method: AN400/AN420 Tested: 24/3/2015

| Dichlorvos                        | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
|-----------------------------------|-------|-----|---|---|------|------|
| Dimethoate                        | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
| Fenitrothion                      | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Malathion                         | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Bromophos Ethyl                   | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Methidathion                      | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
| Ethion                            | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | - | - | <0.2 | <0.2 |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | - | - | 88 | 90  |
|------------------------------|---|---|---|---|----|-----|
| d14-p-terphenyl (Surrogate)  | % | - | - | - | 98 | 100 |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: AN040/AN320 Tested: 25/3/2015

| Arsenic, As   | mg/kg | 1   | 2    | 2    | 1    | 2    |
|---------------|-------|-----|------|------|------|------|
| Beryllium, Be | mg/kg | 0.5 | <0.5 | <0.5 | 0.6  | 0.7  |
| Boron, B      | mg/kg | 5   | <5   | <5   | <5   | <5   |
| Cadmium, Cd   | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
| Chromium, Cr  | mg/kg | 0.5 | 8.3  | 3.8  | 9.9  | 13   |
| Cobalt, Co    | mg/kg | 0.5 | 3.8  | 2.4  | 4.0  | 6.0  |
| Copper, Cu    | mg/kg | 0.5 | 4.2  | 2.6  | 3.9  | 4.9  |
| Lead, Pb      | mg/kg | 1   | 12   | 8    | 8    | 11   |
| Manganese, Mn | mg/kg | 1   | 290  | 130  | 250  | 410  |
| Nickel, Ni    | mg/kg | 0.5 | 2.5  | 1.7  | 2.9  | 3.1  |
| Selenium, Se  | mg/kg | 3   | <3   | <3   | <3   | <3   |
| Zinc, Zn      | mg/kg | 2   | 12   | 10   | 13   | 14   |



### SE137450 R0

|                                                                                                                                  | Si      | nple Number<br>ample Matrix<br>Sample Date<br>ample Name | SE137450.001<br>Soil<br>18 Mar 2015<br>TP01_0.1-0.2 | SE137450.002<br>Soil<br>18 Mar 2015<br>TP02_0.5-0.6 | SE137450.003<br>Soil<br>18 Mar 2015<br>TP03_1.0-1.1 | SE137450.004<br>Soil<br>18 Mar 2015<br>TP04_0.1-0.2 |
|----------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                                                                        | Units   | LOR                                                      |                                                     |                                                     |                                                     |                                                     |
| Mercury in Soil Method: AN312 Tested: 25/3/2015                                                                                  |         |                                                          |                                                     |                                                     |                                                     |                                                     |
| Mercury                                                                                                                          | mg/kg   | 0.01                                                     | 0.01                                                | <0.01                                               | 0.01                                                | 0.01                                                |
| Moisture Content Method: AN002 Tested: 25/3/2015                                                                                 |         |                                                          |                                                     |                                                     |                                                     |                                                     |
| % Moisture                                                                                                                       | %       | 0.5                                                      | 4.3                                                 | 7.0                                                 | 8.2                                                 | 11                                                  |
| Fibre Identification in soil       Method: AN602       Tested: 26/3/2015         FibreID       Asbestos Detected       SemiQuant | No unit | -                                                        | No                                                  | No                                                  | No                                                  | No                                                  |
| Estimated Fibres                                                                                                                 | %w/w    | 0.01                                                     | <0.01                                               | <0.01                                               | <0.01                                               | <0.01                                               |
| Fibre ID in bulk materials Method: AN602 Tested: -<br>FibreID Asbestos Detected                                                  | No unit | -                                                        |                                                     |                                                     | -                                                   |                                                     |
| Aspestos Detected                                                                                                                | NO UNIT | -                                                        | -                                                   | -                                                   | -                                                   | -                                                   |
| Weight of Sample Method: AN002 Tested: -                                                                                         |         |                                                          |                                                     |                                                     |                                                     |                                                     |
|                                                                                                                                  |         | 1                                                        |                                                     |                                                     |                                                     |                                                     |



### SE137450 R0

|                                                                                         |          | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE137450.005<br>Soil<br>18 Mar 2015<br>TP05_2.0-2.2 | SE137450.006<br>Soil<br>18 Mar 2015<br>TP06_3.0-3.1 | SE137450.007<br>Soil<br>19 Mar 2015<br>TP07_1.0-1.2 | SE137450.008<br>Soil<br>19 Mar 2015<br>TP08_1.1-1.2 |
|-----------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                               | Units    | LOR                                                          |                                                     |                                                     |                                                     |                                                     |
| VOC's in Soil Method: AN433/AN434 Tested: 23/3/2015<br>Monocyclic Aromatic Hydrocarbons |          |                                                              |                                                     |                                                     |                                                     |                                                     |
| Benzene                                                                                 | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Toluene                                                                                 | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Ethylbenzene                                                                            | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| m/p-xylene                                                                              | mg/kg    | 0.2                                                          | <0.2                                                | <0.2                                                | <0.2                                                | <0.2                                                |
| o-xylene                                                                                | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Naphthalene<br>Surrogates                                                               | mg/kg    | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| Dibromofluoromethane (Surrogate)                                                        | %        | -                                                            | 73                                                  | 81                                                  | 72                                                  | 83                                                  |
| d4-1,2-dichloroethane (Surrogate)                                                       | %        | -                                                            | 92                                                  | 108                                                 | 97                                                  | 117                                                 |
| d8-toluene (Surrogate)                                                                  | %        | -                                                            | 74                                                  | 78                                                  | 76                                                  | 74                                                  |
| Bromofluorobenzene (Surrogate)                                                          | %        | -                                                            | 81                                                  | 85                                                  | 76                                                  | 83                                                  |
| Totals                                                                                  |          |                                                              |                                                     |                                                     |                                                     |                                                     |
| Total Xylenes*                                                                          | mg/kg    | 0.3                                                          | <0.3                                                | <0.3                                                | <0.3                                                | <0.3                                                |
| Total BTEX*                                                                             | mg/kg    | 0.6                                                          | <0.6                                                | <0.6                                                | <0.6                                                | <0.6                                                |
| Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN4                               | 34/AN410 | Tested: 23/3/2                                               | 2015                                                |                                                     |                                                     |                                                     |
| TRH C6-C10                                                                              | mg/kg    | 25                                                           | <25                                                 | <25                                                 | <25                                                 | <25                                                 |
|                                                                                         |          |                                                              |                                                     |                                                     |                                                     |                                                     |

| TRH C6-C10 | mg/kg | 25 | <25 | <25 | <25 | <25 |
|------------|-------|----|-----|-----|-----|-----|
| TRH C6-C9  | mg/kg | 20 | <20 | <20 | <20 | <20 |

| Dibromofluoromethane (Surrogate)  | % | - | 73 | 81  | 72 | 83  |
|-----------------------------------|---|---|----|-----|----|-----|
| d4-1,2-dichloroethane (Surrogate) | % | - | 92 | 108 | 97 | 117 |
| d8-toluene (Surrogate)            | % | - | 74 | 78  | 76 | 74  |
| Bromofluorobenzene (Surrogate)    | % | - | 81 | 85  | 76 | 83  |



### SE137450 R0

|                                                                           |         | ample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE137450.005<br>Soil<br>18 Mar 2015<br>TP05_2.0-2.2 | SE137450.006<br>Soil<br>18 Mar 2015<br>TP06_3.0-3.1 | SE137450.007<br>Soil<br>19 Mar 2015<br>TP07_1.0-1.2 | SE137450.008<br>Soil<br>19 Mar 2015<br>TP08_1.1-1.2 |
|---------------------------------------------------------------------------|---------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                 | Units   | LOR                                                         |                                                     |                                                     |                                                     |                                                     |
| Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN43<br>VPH F Bands | 4/AN410 | Tested: 23/3/2                                              | 2015 (continue                                      | d)                                                  |                                                     |                                                     |
| Benzene (F0)                                                              | mg/kg   | 0.1                                                         | <0.1                                                | <0.1                                                | <0.1                                                | <0.1                                                |
| TRH C6-C10 minus BTEX (F1)                                                | mg/kg   | 25                                                          | <25                                                 | <25                                                 | <25                                                 | <25                                                 |
| TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403                | Tested: | 24/3/2015                                                   | i                                                   |                                                     |                                                     |                                                     |

| TRH C10-C14       | mg/kg | 20  | <20  | <20  | <20  | <20  |
|-------------------|-------|-----|------|------|------|------|
| TRH C15-C28       | mg/kg | 45  | <45  | <45  | <45  | <45  |
| TRH C29-C36       | mg/kg | 45  | <45  | <45  | <45  | <45  |
| TRH C37-C40       | mg/kg | 100 | <100 | <100 | <100 | <100 |
| TRH C10-C36 Total | mg/kg | 110 | <110 | <110 | <110 | <110 |
| TRH C10-C40 Total | mg/kg | 210 | <210 | <210 | <210 | <210 |

TRH F Bands

| TRH >C10-C16 (F2)               | mg/kg | 25  | <25  | <25  | <25  | <25  |
|---------------------------------|-------|-----|------|------|------|------|
| TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | <25  | <25  | <25  | <25  |
| TRH >C16-C34 (F3)               | mg/kg | 90  | <90  | <90  | <90  | <90  |
| TRH >C34-C40 (F4)               | mg/kg | 120 | <120 | <120 | <120 | <120 |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420 Tested: 24/3/2015

| Naphthalene                                                                                                                                     | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|---|---|------|------|
| 2-methylnaphthalene                                                                                                                             | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| 1-methylnaphthalene                                                                                                                             | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Acenaphthylene                                                                                                                                  | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Acenaphthene                                                                                                                                    | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Fluorene                                                                                                                                        | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Phenanthrene                                                                                                                                    | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Anthracene                                                                                                                                      | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Fluoranthene                                                                                                                                    | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Pyrene                                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(a)anthracene                                                                                                                              | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Chrysene                                                                                                                                        | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(b&j)fluoranthene                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(k)fluoranthene                                                                                                                            | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(a)pyrene                                                                                                                                  | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Indeno(1,2,3-cd)pyrene                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Dibenzo(a&h)anthracene                                                                                                                          | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Benzo(ghi)perylene                                                                                                                              | mg/kg       | 0.1 | - | - | <0.1 | <0.1 |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>-</td><td>-</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0*<>                | TEQ         | 0.2 | - | - | <0.2 | <0.2 |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td>-</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | - | - | <0.3 | <0.3 |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td>-</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor> | TEQ (mg/kg) | 0.2 | - | - | <0.2 | <0.2 |
| Total PAH                                                                                                                                       | mg/kg       | 0.8 | - | - | <0.8 | <0.8 |



#### SE137450 R0

|                                                                          | Sa          | nple Number<br>ample Matrix<br>Sample Date<br>ample Name | s Soil<br>18 Mar 2015 | SE137450.006<br>Soil<br>18 Mar 2015<br>TP06_3.0-3.1 | SE137450.007<br>Soil<br>19 Mar 2015<br>TP07_1.0-1.2 | SE137450.008<br>Soil<br>19 Mar 2015<br>TP08_1.1-1.2 |
|--------------------------------------------------------------------------|-------------|----------------------------------------------------------|-----------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                | Units       | LOR                                                      |                       |                                                     |                                                     |                                                     |
| PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN<br>Surrogates | 1420 Tested | l: 24/3/201                                              | 5 (continued)         |                                                     |                                                     |                                                     |
| d5-nitrobenzene (Surrogate)                                              | %           | -                                                        | -                     | -                                                   | 86                                                  | 86                                                  |
| 2-fluorobiphenyl (Surrogate)                                             | %           | -                                                        | -                     | -                                                   | 88                                                  | 90                                                  |
| d14-p-terphenyl (Surrogate)                                              | %           | -                                                        | -                     | -                                                   | 98                                                  | 96                                                  |
| OC Pesticides in Soil Method: AN400/AN420 Tested: 24/3/20                | )15         |                                                          |                       |                                                     |                                                     |                                                     |
| Hexachlorobenzene (HCB)                                                  | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Alpha BHC                                                                | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Lindane                                                                  | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Heptachlor                                                               | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Aldrin                                                                   | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Beta BHC                                                                 | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Delta BHC                                                                | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Heptachlor epoxide                                                       | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| o,p'-DDE                                                                 | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Alpha Endosulfan                                                         | mg/kg       | 0.2                                                      | -                     | -                                                   | <0.2                                                | <0.2                                                |
| Gamma Chlordane                                                          | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Alpha Chlordane                                                          | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| trans-Nonachlor                                                          | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| p,p'-DDE                                                                 | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Dieldrin                                                                 | mg/kg       | 0.2                                                      | -                     | -                                                   | <0.2                                                | <0.2                                                |
| Endrin                                                                   | mg/kg       | 0.2                                                      | -                     | -                                                   | <0.2                                                | <0.2                                                |
| o,p'-DDD                                                                 | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| o,p'-DDT                                                                 | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Beta Endosulfan                                                          | mg/kg       | 0.2                                                      | -                     | -                                                   | <0.2                                                | <0.2                                                |
| p,p'-DDD                                                                 | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| p,p'-DDT                                                                 | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Endosulfan sulphate                                                      | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Endrin Aldehyde                                                          | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Methoxychlor                                                             | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Endrin Ketone                                                            | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Isodrin                                                                  | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |
| Mirex                                                                    | mg/kg       | 0.1                                                      | -                     | -                                                   | <0.1                                                | <0.1                                                |



### SE137450 R0

|                                     |                     |                   | Sa      | ple Number<br>Imple Matrix<br>Sample Date<br>Imple Name | Soil<br>18 Mar 2015 | SE137450.006<br>Soil<br>18 Mar 2015<br>TP06_3.0-3.1 | SE137450.007<br>Soil<br>19 Mar 2015<br>TP07_1.0-1.2 | SE137450.008<br>Soil<br>19 Mar 2015<br>TP08_1.1-1.2 |
|-------------------------------------|---------------------|-------------------|---------|---------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                           |                     |                   | Units   | LOR                                                     |                     |                                                     |                                                     |                                                     |
| OC Pesticides in Soil<br>Surrogates | Method: AN400/AN420 | Tested: 24/3/2015 | (contin | ued)                                                    |                     |                                                     |                                                     |                                                     |
| Tetrachloro-m-xylene (TCMX) (S      | Surrogate)          |                   | %       | -                                                       | -                   | -                                                   | 106                                                 | 110                                                 |

#### OP Pesticides in Soil Method: AN400/AN420 Tested: 24/3/2015

| Dichlorvos                        | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
|-----------------------------------|-------|-----|---|---|------|------|
| Dimethoate                        | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
| Fenitrothion                      | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Malathion                         | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Bromophos Ethyl                   | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Methidathion                      | mg/kg | 0.5 | - | - | <0.5 | <0.5 |
| Ethion                            | mg/kg | 0.2 | - | - | <0.2 | <0.2 |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | - | - | <0.2 | <0.2 |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | - | - | 88 | 90 |
|------------------------------|---|---|---|---|----|----|
| d14-p-terphenyl (Surrogate)  | % | - | - | - | 98 | 96 |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: AN040/AN320 Tested: 25/3/2015

| Arsenic, As   | mg/kg | 1   | 2    | 1    | 2    | 2    |
|---------------|-------|-----|------|------|------|------|
| Beryllium, Be | mg/kg | 0.5 | 1.1  | 0.9  | 0.7  | 0.5  |
| Boron, B      | mg/kg | 5   | <5   | <5   | <5   | <5   |
| Cadmium, Cd   | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
| Chromium, Cr  | mg/kg | 0.5 | 11   | 6.4  | 13   | 6.4  |
| Cobalt, Co    | mg/kg | 0.5 | 4.2  | 4.5  | 3.3  | 4.2  |
| Copper, Cu    | mg/kg | 0.5 | 8.7  | 6.7  | 4.1  | 3.5  |
| Lead, Pb      | mg/kg | 1   | 9    | 9    | 10   | 9    |
| Manganese, Mn | mg/kg | 1   | 57   | 110  | 200  | 230  |
| Nickel, Ni    | mg/kg | 0.5 | 7.7  | 6.2  | 2.6  | 2.6  |
| Selenium, Se  | mg/kg | 3   | <3   | <3   | <3   | <3   |
| Zinc, Zn      | mg/kg | 2   | 10   | 8    | 13   | 12   |



### SE137450 R0

|                                                                                                                                  | Si        | nple Number<br>ample Matrix<br>Sample Date<br>ample Name | SE137450.005<br>Soil<br>18 Mar 2015<br>TP05_2.0-2.2 | SE137450.006<br>Soil<br>18 Mar 2015<br>TP06_3.0-3.1 | SE137450.007<br>Soil<br>19 Mar 2015<br>TP07_1.0-1.2 | SE137450.008<br>Soil<br>19 Mar 2015<br>TP08_1.1-1.2 |
|----------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                                                                                                        | Units     | LOR                                                      |                                                     |                                                     |                                                     |                                                     |
| Mercury in Soil Method: AN312 Tested: 25/3/2015                                                                                  |           |                                                          |                                                     |                                                     |                                                     |                                                     |
| Mercury                                                                                                                          | mg/kg     | 0.01                                                     | 0.05                                                | 0.04                                                | <0.01                                               | <0.01                                               |
| Moisture Content Method: AN002 Tested: 25/3/2015                                                                                 |           |                                                          |                                                     |                                                     |                                                     |                                                     |
| % Moisture                                                                                                                       | %         | 0.5                                                      | 25                                                  | 23                                                  | 13                                                  | 9.3                                                 |
| Fibre Identification in soil       Method: AN602       Tested: 26/3/2015         FibreID       Asbestos Detected       SemiQuant | No unit   | -                                                        | No                                                  | No                                                  | Yes                                                 | No                                                  |
| Estimated Fibres                                                                                                                 | %w/w      | 0.01                                                     | <0.01                                               | <0.01                                               | >0.01                                               | <0.01                                               |
| Fibre ID in bulk materials Method: AN602 Tested: -<br>FibreID                                                                    | No contra |                                                          |                                                     |                                                     |                                                     |                                                     |
| Asbestos Detected                                                                                                                | No unit   | -                                                        | -                                                   | -                                                   | -                                                   | -                                                   |
| Weight of Sample Method: AN002 Tested: -                                                                                         |           |                                                          |                                                     |                                                     |                                                     |                                                     |
|                                                                                                                                  |           |                                                          |                                                     |                                                     |                                                     |                                                     |



### SE137450 R0

|                                                                                         | :        | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>19 Mar 2015 | SE137450.010<br>Soil<br>19 Mar 2015<br>TP10_0.1-0.2 | SE137450.011<br>Soil<br>19 Mar 2015<br>QA1 | SE137450.012<br>Material<br>19 Mar 2015<br>Frag 01 |
|-----------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|---------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Parameter                                                                               | Units    | LOR                                                          |                     |                                                     |                                            |                                                    |
| VOC's in Soil Method: AN433/AN434 Tested: 23/3/2015<br>Monocyclic Aromatic Hydrocarbons |          |                                                              |                     |                                                     |                                            |                                                    |
| Benzene                                                                                 | mg/kg    | 0.1                                                          | <0.1                | <0.1                                                | <0.1                                       | -                                                  |
| Toluene                                                                                 | mg/kg    | 0.1                                                          | <0.1                | <0.1                                                | <0.1                                       | -                                                  |
| Ethylbenzene                                                                            | mg/kg    | 0.1                                                          | <0.1                | <0.1                                                | <0.1                                       | -                                                  |
| m/p-xylene                                                                              | mg/kg    | 0.2                                                          | <0.2                | <0.2                                                | <0.2                                       | -                                                  |
| o-xylene                                                                                | mg/kg    | 0.1                                                          | <0.1                | <0.1                                                | <0.1                                       | -                                                  |
| Polycyclic VOCs Naphthalene                                                             | mg/kg    | 0.1                                                          | <0.1                | <0.1                                                | <0.1                                       | -                                                  |
| Surrogates                                                                              |          |                                                              |                     |                                                     |                                            |                                                    |
| Dibromofluoromethane (Surrogate)                                                        | %        | -                                                            | 78                  | 82                                                  | 83                                         | -                                                  |
| d4-1,2-dichloroethane (Surrogate)                                                       | %        | -                                                            | 109                 | 113                                                 | 111                                        | -                                                  |
| d8-toluene (Surrogate)                                                                  | %        | -                                                            | 84                  | 73                                                  | 76                                         | -                                                  |
| Bromofluorobenzene (Surrogate)                                                          | %        | -                                                            | 79                  | 82                                                  | 83                                         | -                                                  |
| Totals                                                                                  |          |                                                              |                     |                                                     |                                            |                                                    |
| Total Xylenes*                                                                          | mg/kg    | 0.3                                                          | <0.3                | <0.3                                                | <0.3                                       | -                                                  |
| Total BTEX*                                                                             | mg/kg    | 0.6                                                          | <0.6                | <0.6                                                | <0.6                                       | -                                                  |
| Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN43                              | 34/AN410 | Tested: 23/3                                                 | /2015               |                                                     |                                            |                                                    |
| TRH C6-C10                                                                              | mg/kg    | 25                                                           | <25                 | <25                                                 | <25                                        | -                                                  |

| TRH C6-C10 | mg/kg | 25 | <25 | <25 | <25 | - |
|------------|-------|----|-----|-----|-----|---|
| TRH C6-C9  | mg/kg | 20 | <20 | <20 | <20 | - |

Surrogates

| Dibromofluoromethane (Surrogate)  | % | - | 78  | 82  | 83  | - |
|-----------------------------------|---|---|-----|-----|-----|---|
| d4-1,2-dichloroethane (Surrogate) | % | - | 109 | 113 | 111 | - |
| d8-toluene (Surrogate)            | % | - | 84  | 73  | 76  | - |
| Bromofluorobenzene (Surrogate)    | % | - | 79  | 82  | 83  | - |



### SE137450 R0

|                                                                          | :         | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE137450.009<br>Soil<br>19 Mar 2015<br>TP09_0.4-0.5 | SE137450.010<br>Soil<br>19 Mar 2015<br>TP10_0.1-0.2 | SE137450.011<br>Soil<br>19 Mar 2015<br>QA1 | SE137450.012<br>Material<br>19 Mar 2015<br>Frag 01 |
|--------------------------------------------------------------------------|-----------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Parameter                                                                | Units     | LOR                                                          |                                                     |                                                     |                                            |                                                    |
| Volatile Petroleum Hydrocarbons in Soil Method: AN433/AN4<br>VPH F Bands | 434/AN410 | Tested: 23/3/2                                               | 2015 (continue                                      | d)                                                  |                                            |                                                    |
| Benzene (F0)                                                             | mg/kg     | 0.1                                                          | <0.1                                                | <0.1                                                | <0.1                                       | -                                                  |
| TRH C6-C10 minus BTEX (F1)                                               | mg/kg     | 25                                                           | <25                                                 | <25                                                 | <25                                        | -                                                  |
| TRH C6-C10 minus BTEX (F1)                                               |           | 25                                                           | <25                                                 | <25                                                 | <25                                        | -                                                  |

#### TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403 Tested: 24/3/2015

| TRH C10-C14       | mg/kg | 20  | <20  | <20  | <20  | - |
|-------------------|-------|-----|------|------|------|---|
| TRH C15-C28       | mg/kg | 45  | <45  | <45  | <45  | - |
| TRH C29-C36       | mg/kg | 45  | <45  | <45  | <45  | - |
| TRH C37-C40       | mg/kg | 100 | <100 | <100 | <100 | - |
| TRH C10-C36 Total | mg/kg | 110 | <110 | <110 | <110 | - |
| TRH C10-C40 Total | mg/kg | 210 | <210 | <210 | <210 | - |

TRH F Bands

| TRH >C10-C16 (F2)               | mg/kg | 25  | <25  | <25  | <25  | - |
|---------------------------------|-------|-----|------|------|------|---|
| TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | <25  | <25  | <25  | - |
| TRH >C16-C34 (F3)               | mg/kg | 90  | <90  | <90  | <90  | - |
| TRH >C34-C40 (F4)               | mg/kg | 120 | <120 | <120 | <120 | - |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420 Tested: 24/3/2015

| Naphthalene                                                                                                                               | mg/kg       | 0.1 | <0.1 | - | - | - |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|------|---|---|---|
| 2-methylnaphthalene                                                                                                                       | mg/kg       | 0.1 | <0.1 | - | - | - |
| 1-methylnaphthalene                                                                                                                       | mg/kg       | 0.1 | <0.1 | - | - | - |
| Acenaphthylene                                                                                                                            | mg/kg       | 0.1 | <0.1 | - | - | - |
| Acenaphthene                                                                                                                              | mg/kg       | 0.1 | <0.1 | - | - | - |
| Fluorene                                                                                                                                  | mg/kg       | 0.1 | <0.1 | - | - | - |
| Phenanthrene                                                                                                                              | mg/kg       | 0.1 | <0.1 | - | - | - |
| Anthracene                                                                                                                                | mg/kg       | 0.1 | <0.1 | - | - | - |
| Fluoranthene                                                                                                                              | mg/kg       | 0.1 | <0.1 | - | - | - |
| Pyrene                                                                                                                                    | mg/kg       | 0.1 | <0.1 | - | - | - |
| Benzo(a)anthracene                                                                                                                        | mg/kg       | 0.1 | <0.1 | - | - | - |
| Chrysene                                                                                                                                  | mg/kg       | 0.1 | <0.1 | - | - | - |
| Benzo(b&j)fluoranthene                                                                                                                    | mg/kg       | 0.1 | <0.1 | - | - | - |
| Benzo(k)fluoranthene                                                                                                                      | mg/kg       | 0.1 | <0.1 | - | - | - |
| Benzo(a)pyrene                                                                                                                            | mg/kg       | 0.1 | <0.1 | - | - | - |
| Indeno(1,2,3-cd)pyrene                                                                                                                    | mg/kg       | 0.1 | <0.1 | - | - | - |
| Dibenzo(a&h)anthracene                                                                                                                    | mg/kg       | 0.1 | <0.1 | - | - | - |
| Benzo(ghi)perylene                                                                                                                        | mg/kg       | 0.1 | <0.1 | - | - | - |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>-</td><td>-</td><td>-</td></lor=0*<>                | TEQ         | 0.2 | <0.2 | - | - | - |
| Carcinogenic PAHs, BaP TEQ <lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>-</td><td>-</td><td>-</td></lor*<>            | TEQ (mg/kg) | 0.3 | <0.3 | - | - | - |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>-</td><td>-</td><td>-</td></lor=lor> | TEQ (mg/kg) | 0.2 | <0.2 | - | - | - |
| Total PAH                                                                                                                                 | mg/kg       | 0.8 | <0.8 | - | - | - |



### SE137450 R0

|                                                                          | Si          | nple Number<br>ample Matrix<br>Sample Date<br>sample Name | Soil          | SE137450.010<br>Soil<br>19 Mar 2015<br>TP10_0.1-0.2 | SE137450.011<br>Soil<br>19 Mar 2015<br>QA1 | SE137450.012<br>Material<br>19 Mar 2015<br>Frag 01 |
|--------------------------------------------------------------------------|-------------|-----------------------------------------------------------|---------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Parameter                                                                | Units       | LOR                                                       |               |                                                     |                                            |                                                    |
| PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN<br>Surrogates | 1420 Tested | d: 24/3/2015                                              | i (continued) |                                                     |                                            |                                                    |
| d5-nitrobenzene (Surrogate)                                              | %           | -                                                         | 86            | -                                                   | -                                          | -                                                  |
| 2-fluorobiphenyl (Surrogate)                                             | %           | -                                                         | 90            | -                                                   | -                                          | -                                                  |
| d14-p-terphenyl (Surrogate)                                              | %           | -                                                         | 98            | -                                                   | -                                          | -                                                  |
| OC Pesticides in Soil Method: AN400/AN420 Tested: 24/3/20                | )15         |                                                           |               |                                                     |                                            |                                                    |
| Hexachlorobenzene (HCB)                                                  | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Alpha BHC                                                                | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Lindane                                                                  | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Heptachlor                                                               | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Aldrin                                                                   | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Beta BHC                                                                 | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Delta BHC                                                                | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Heptachlor epoxide                                                       | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| o,p'-DDE                                                                 | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Alpha Endosulfan                                                         | mg/kg       | 0.2                                                       | <0.2          | -                                                   | <0.2                                       | -                                                  |
| Gamma Chlordane                                                          | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Alpha Chlordane                                                          | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| trans-Nonachlor                                                          | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| p,p'-DDE                                                                 | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Dieldrin                                                                 | mg/kg       | 0.2                                                       | <0.2          | -                                                   | <0.2                                       | -                                                  |
| Endrin                                                                   | mg/kg       | 0.2                                                       | <0.2          | -                                                   | <0.2                                       | -                                                  |
| o,p'-DDD                                                                 | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| o,p'-DDT                                                                 | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Beta Endosulfan                                                          | mg/kg       | 0.2                                                       | <0.2          | -                                                   | <0.2                                       | -                                                  |
| p,p'-DDD                                                                 | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| p,p'-DDT                                                                 | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Endosulfan sulphate                                                      | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Endrin Aldehyde                                                          | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Methoxychlor                                                             | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Endrin Ketone                                                            | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Isodrin                                                                  | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |
| Mirex                                                                    | mg/kg       | 0.1                                                       | <0.1          | -                                                   | <0.1                                       | -                                                  |



### SE137450 R0

|                                     |                     |                   | Sa       | nple Number<br>Imple Matrix<br>Sample Date<br>ample Name | Soil<br>19 Mar 2015 | SE137450.010<br>Soil<br>19 Mar 2015<br>TP10_0.1-0.2 | SE137450.011<br>Soil<br>19 Mar 2015<br>QA1 | SE137450.012<br>Material<br>19 Mar 2015<br>Frag 01 |
|-------------------------------------|---------------------|-------------------|----------|----------------------------------------------------------|---------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Parameter                           |                     |                   | Units    | LOR                                                      |                     |                                                     |                                            |                                                    |
| OC Pesticides in Soil<br>Surrogates | Method: AN400/AN420 | Tested: 24/3/2015 | (continu | ued)                                                     |                     |                                                     |                                            |                                                    |
| Tetrachloro-m-xylene (TCMX) (S      | Surrogate)          |                   | %        | -                                                        | 109                 | -                                                   | 107                                        | -                                                  |

#### OP Pesticides in Soil Method: AN400/AN420 Tested: 24/3/2015

| Dichlorvos                        | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
|-----------------------------------|-------|-----|------|---|------|---|
| Dimethoate                        | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Fenitrothion                      | mg/kg | 0.2 | <0.2 | - | <0.2 | - |
| Malathion                         | mg/kg | 0.2 | <0.2 | - | <0.2 | - |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2 | - | <0.2 | - |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2 | - | <0.2 | - |
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2 | - | <0.2 | - |
| Methidathion                      | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Ethion                            | mg/kg | 0.2 | <0.2 | - | <0.2 | - |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2 | - | <0.2 | - |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | 90 | - | 88 | - |
|------------------------------|---|---|----|---|----|---|
| d14-p-terphenyl (Surrogate)  | % | - | 98 | - | 94 | - |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: AN040/AN320 Tested: 25/3/2015

| Arsenic, As   | mg/kg | 1   | 2    | 2    | 2    | - |
|---------------|-------|-----|------|------|------|---|
| Beryllium, Be | mg/kg | 0.5 | 0.6  | <0.5 | 0.7  | - |
| Boron, B      | mg/kg | 5   | <5   | <5   | <5   | - |
| Cadmium, Cd   | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | - |
| Chromium, Cr  | mg/kg | 0.5 | 5.5  | 13   | 13   | - |
| Cobalt, Co    | mg/kg | 0.5 | 3.8  | 4.2  | 4.9  | - |
| Copper, Cu    | mg/kg | 0.5 | 3.3  | 3.6  | 5.5  | - |
| Lead, Pb      | mg/kg | 1   | 10   | 12   | 10   | - |
| Manganese, Mn | mg/kg | 1   | 280  | 400  | 280  | - |
| Nickel, Ni    | mg/kg | 0.5 | 2.6  | 2.3  | 3.3  | - |
| Selenium, Se  | mg/kg | 3   | <3   | <3   | <3   | - |
| Zinc, Zn      | mg/kg | 2   | 12   | 8    | 11   | - |



### SE137450 R0

|                                                                                                  | S         | nple Number<br>ample Matrix<br>Sample Date<br>ample Name | SE137450.009<br>Soil<br>19 Mar 2015<br>TP09_0.4-0.5 | SE137450.010<br>Soil<br>19 Mar 2015<br>TP10_0.1-0.2 | SE137450.011<br>Soil<br>19 Mar 2015<br>QA1 | SE137450.012<br>Material<br>19 Mar 2015<br>Frag 01 |
|--------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Parameter                                                                                        | Units     | LOR                                                      |                                                     |                                                     |                                            |                                                    |
| Mercury in Soil Method: AN312 Tested: 25/3/2015                                                  |           |                                                          |                                                     |                                                     |                                            |                                                    |
| Mercury                                                                                          | mg/kg     | 0.01                                                     | <0.01                                               | 0.01                                                | 0.01                                       | -                                                  |
| Moisture Content Method: AN002 Tested: 25/3/2015                                                 |           |                                                          |                                                     |                                                     |                                            |                                                    |
| % Moisture                                                                                       | %         | 0.5                                                      | 11                                                  | 5.6                                                 | 8.0                                        | -                                                  |
| Fibre Identification in soil Method: AN602 Tested: 26/3/2015 FibreID Asbestos Detected SemiQuant | No unit   | -                                                        | No                                                  | No                                                  | -                                          | -                                                  |
| Estimated Fibres                                                                                 | %w/w      | 0.01                                                     | <0.01                                               | <0.01                                               | -                                          | _                                                  |
| Fibre ID in bulk materials Method: AN602 Tested: -<br>FibreID                                    | No. or 16 |                                                          |                                                     |                                                     |                                            |                                                    |
| Asbestos Detected                                                                                | No unit   | -                                                        | -                                                   | -                                                   | -                                          | Yes                                                |
| Weight of Sample Method: AN002 Tested: -                                                         |           |                                                          |                                                     |                                                     |                                            |                                                    |
|                                                                                                  |           |                                                          |                                                     |                                                     |                                            |                                                    |



#### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### Mercury in Soil Method: ME-(AU)-[ENV]AN312

| Parameter | QC        | Units | LOR  | MB    | DUP %RPD | LCS       | MS        |
|-----------|-----------|-------|------|-------|----------|-----------|-----------|
|           | Reference |       |      |       |          | %Recovery | %Recovery |
| Mercury   | LB074476  | mg/kg | 0.01 | <0.01 | 0%       | 107%      | 91%       |

#### Moisture Content Method: ME-(AU)-[ENV]AN002

| Parameter  | QC<br>Reference | Units | LOR | DUP %RPD |
|------------|-----------------|-------|-----|----------|
| % Moisture | LB074485        | %     | 0.5 | 8 - 20%  |

#### OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

| Parameter               | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery |
|-------------------------|-----------------|-------|-----|------|----------|------------------|
| Hexachlorobenzene (HCB) | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Alpha BHC               | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Lindane                 | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Heptachlor              | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | 116%             |
| Aldrin                  | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | 114%             |
| Beta BHC                | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Delta BHC               | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | 104%             |
| Heptachlor epoxide      | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| o,p'-DDE                | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Alpha Endosulfan        | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | NA               |
| Gamma Chlordane         | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Alpha Chlordane         | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| trans-Nonachlor         | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| p,p'-DDE                | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Dieldrin                | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | 111%             |
| Endrin                  | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | 118%             |
| o,p'-DDD                | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| o,p'-DDT                | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Beta Endosulfan         | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | NA               |
| p,p'-DDD                | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| p,p'-DDT                | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | 116%             |
| Endosulfan sulphate     | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Endrin Aldehyde         | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Methoxychlor            | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Endrin Ketone           | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Isodrin                 | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |
| Mirex                   | LB074380        | mg/kg | 0.1 | <0.1 | 0%       | NA               |

Surrogates

| Parameter                               | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|-----------------------------------------|-----------|-------|-----|------|----------|-----------|
|                                         | Reference |       |     |      |          | %Recovery |
| Tetrachloro-m-xylene (TCMX) (Surrogate) | LB074380  | %     | -   | 105% | 4%       | 109%      |



MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### OP Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

| Parameter                         | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery |
|-----------------------------------|-----------------|-------|-----|------|----------|------------------|
| Dichlorvos                        | LB074380        | mg/kg | 0.5 | <0.5 | 0%       | 97%              |
| Dimethoate                        | LB074380        | mg/kg | 0.5 | <0.5 | 0%       | NA               |
| Diazinon (Dimpylate)              | LB074380        | mg/kg | 0.5 | <0.5 | 0%       | 122%             |
| Fenitrothion                      | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | NA               |
| Malathion                         | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | NA               |
| Chlorpyrifos (Chlorpyrifos Ethyl) | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | 101%             |
| Parathion-ethyl (Parathion)       | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | NA               |
| Bromophos Ethyl                   | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | NA               |
| Methidathion                      | LB074380        | mg/kg | 0.5 | <0.5 | 0%       | NA               |
| Ethion                            | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | 109%             |
| Azinphos-methyl (Guthion)         | LB074380        | mg/kg | 0.2 | <0.2 | 0%       | NA               |

|   | Surrogates                   |           |       |     |     |          |           |
|---|------------------------------|-----------|-------|-----|-----|----------|-----------|
|   | Parameter                    | QC        | Units | LOR | MB  | DUP %RPD | LCS       |
|   |                              | Reference |       |     |     |          | %Recovery |
| I | 2-fluorobiphenyl (Surrogate) | LB074380  | %     | -   | 78% | 2%       | 82%       |
|   | d14-p-terphenyl (Surrogate)  | LB074380  | %     | -   | 88% | 2%       | 98%       |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

| Parameter                                                                                                                                                     | QC<br>Reference | Units       | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-----|------|----------|------------------|-----------------|
| Naphthalene                                                                                                                                                   | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 114%             | 99%             |
| 2-methylnaphthalene                                                                                                                                           | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| 1-methylnaphthalene                                                                                                                                           | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Acenaphthylene                                                                                                                                                | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 109%             | 95%             |
| Acenaphthene                                                                                                                                                  | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 115%             | 102%            |
| Fluorene                                                                                                                                                      | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Phenanthrene                                                                                                                                                  | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 117%             | 98%             |
| Anthracene                                                                                                                                                    | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 115%             | 99%             |
| Fluoranthene                                                                                                                                                  | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 118%             | 98%             |
| Pyrene                                                                                                                                                        | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 115%             | 97%             |
| Benzo(a)anthracene                                                                                                                                            | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Chrysene                                                                                                                                                      | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Benzo(b&j)fluoranthene                                                                                                                                        | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Benzo(k)fluoranthene                                                                                                                                          | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Benzo(a)pyrene                                                                                                                                                | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | 111%             | 117%            |
| Indeno(1,2,3-cd)pyrene                                                                                                                                        | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Dibenzo(a&h)anthracene                                                                                                                                        | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Benzo(ghi)perylene                                                                                                                                            | LB074380        | mg/kg       | 0.1 | <0.1 | 0%       | NA               | NA              |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>LB074380</td><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>0%</td><td>NA</td><td>NA</td></lor=0*<>                | LB074380        | TEQ         | 0.2 | <0.2 | 0%       | NA               | NA              |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>LB074380</td><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>0%</td><td>NA</td><td>NA</td></lor=lor*<>    | LB074380        | TEQ (mg/kg) | 0.3 | <0.3 | 0%       | NA               | NA              |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>LB074380</td><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0%</td><td>NA</td><td>NA</td></lor=lor> | LB074380        | TEQ (mg/kg) | 0.2 | <0.2 | 0%       | NA               | NA              |
| Total PAH                                                                                                                                                     | LB074380        | mg/kg       | 0.8 | <0.8 | 0%       | NA               | NA              |

Surrogates

| Parameter                    | QC<br>Reference | Units | LOR | MB  | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|------------------------------|-----------------|-------|-----|-----|----------|------------------|-----------------|
| d5-nitrobenzene (Surrogate)  | LB074380        | %     | -   | 80% | 2%       | 82%              | 86%             |
| 2-fluorobiphenyl (Surrogate) | LB074380        | %     | -   | 78% | 2%       | 82%              | 88%             |
| d14-p-terphenyl (Surrogate)  | LB074380        | %     | -   | 88% | 2%       | 98%              | 96%             |



MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[ENV]AN040/AN320

| Parameter     | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|---------------|-----------|-------|-----|------|----------|-----------|-----------|
|               | Reference |       |     |      |          | %Recovery | %Recovery |
| Arsenic, As   | LB074444  | mg/kg | 1   | <1   | 3 - 38%  | 96%       | 77%       |
| Beryllium, Be | LB074444  | mg/kg | 0.5 | <0.5 | 0%       | 97%       | 82%       |
| Boron, B      | LB074444  | mg/kg | 5   | <5   | 0%       | 93%       | 129%      |
| Cadmium, Cd   | LB074444  | mg/kg | 0.3 | <0.3 | 0 - 6%   | 94%       | 79%       |
| Chromium, Cr  | LB074444  | mg/kg | 0.5 | <0.5 | 5 - 6%   | 95%       | 80%       |
| Cobalt, Co    | LB074444  | mg/kg | 0.5 | <0.5 | 16%      | 96%       | 82%       |
| Copper, Cu    | LB074444  | mg/kg | 0.5 | <0.5 | 1 - 6%   | 100%      | 88%       |
| Lead, Pb      | LB074444  | mg/kg | 1   | <1   | 1 - 5%   | 97%       | 81%       |
| Manganese, Mn | LB074444  | mg/kg | 1   | <1   | 3%       | 96%       | 66%       |
| Nickel, Ni    | LB074444  | mg/kg | 0.5 | <0.5 | 1 - 7%   | 96%       | 82%       |
| Selenium, Se  | LB074444  | mg/kg | 3   | <3   | 0%       | 95%       | 130%      |
| Zinc, Zn      | LB074444  | mg/kg | 2   | <2   | 1 - 2%   | 97%       | 87%       |

#### TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

| Parameter         | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|-------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                   | Reference |       |     |      |          | %Recovery | %Recovery |
| TRH C10-C14       | LB074380  | mg/kg | 20  | <20  | 0%       | 100%      | 100%      |
| TRH C15-C28       | LB074380  | mg/kg | 45  | <45  | 0%       | 100%      | 95%       |
| TRH C29-C36       | LB074380  | mg/kg | 45  | <45  | 0%       | 85%       | 85%       |
| TRH C37-C40       | LB074380  | mg/kg | 100 | <100 | 0%       | NA        | NA        |
| TRH C10-C36 Total | LB074380  | mg/kg | 110 | <110 | 0%       | NA        | NA        |
| TRH C10-C40 Total | LB074380  | mg/kg | 210 | <210 | 0%       | NA        | NA        |

TRH F Bands

| Parameter                       | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|---------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                                 | Reference |       |     |      |          | %Recovery | %Recovery |
| TRH >C10-C16 (F2)               | LB074380  | mg/kg | 25  | <25  | 0%       | 100%      | 100%      |
| TRH >C10-C16 (F2) - Naphthalene | LB074380  | mg/kg | 25  | <25  | 0%       | NA        | NA        |
| TRH >C16-C34 (F3)               | LB074380  | mg/kg | 90  | <90  | 0%       | 95%       | 93%       |
| TRH >C34-C40 (F4)               | LB074380  | mg/kg | 120 | <120 | 0%       | 85%       | NA        |



#### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons

| Parameter    | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|--------------|-----------------|-------|-----|------|----------|------------------|-----------------|
| Benzene      | LB074326        | mg/kg | 0.1 | <0.1 | 0%       | 76%              | 76%             |
| Toluene      | LB074326        | mg/kg | 0.1 | <0.1 | 0%       | 76%              | 76%             |
| Ethylbenzene | LB074326        | mg/kg | 0.1 | <0.1 | 0%       | 84%              | 87%             |
| m/p-xylene   | LB074326        | mg/kg | 0.2 | <0.2 | 0%       | 87%              | 90%             |
| o-xylene     | LB074326        | mg/kg | 0.1 | <0.1 | 0%       | 80%              | 86%             |

Polycyclic VOCs

| Parameter   | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|-------------|-----------|-------|-----|------|----------|-----------|-----------|
|             | Reference |       |     |      |          | %Recovery | %Recovery |
| Naphthalene | LB074326  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |

| Surrogates                        |           |       |     |      |          |           |           |
|-----------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
| Parameter                         | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|                                   | Reference |       |     |      |          | %Recovery | %Recovery |
| Dibromofluoromethane (Surrogate)  | LB074326  | %     | -   | 96%  | 2 - 3%   | 86%       | 76%       |
| d4-1,2-dichloroethane (Surrogate) | LB074326  | %     | -   | 117% | 5 - 9%   | 117%      | 97%       |
| d8-toluene (Surrogate)            | LB074326  | %     | -   | 88%  | 1 - 8%   | 104%      | 79%       |
| Bromofluorobenzene (Surrogate)    | LB074326  | %     | -   | 94%  | 0 - 3%   | 102%      | 96%       |

Totals

| Parameter      | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|----------------|-----------|-------|-----|------|----------|-----------|-----------|
|                | Reference |       |     |      |          | %Recovery | %Recovery |
| Total Xylenes* | LB074326  | mg/kg | 0.3 | <0.3 | 0%       | NA        | NA        |
| Total BTEX*    | LB074326  | mg/kg | 0.6 | <0.6 | 0%       | NA        | NA        |

#### Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Parameter  | QC        | Units | LOR | MB  | DUP %RPD | LCS       | MS        |
|------------|-----------|-------|-----|-----|----------|-----------|-----------|
|            | Reference |       |     |     |          | %Recovery | %Recovery |
| TRH C6-C10 | LB074326  | mg/kg | 25  | <25 | 0%       | 87%       | 91%       |
| TRH C6-C9  | LB074326  | mg/kg | 20  | <20 | 0%       | 84%       | 77%       |

Surrogates

| Parameter                         | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|-----------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                                   | Reference |       |     |      |          | %Recovery | %Recovery |
| Dibromofluoromethane (Surrogate)  | LB074326  | %     | -   | 96%  | 2 - 3%   | 86%       | 76%       |
| d4-1,2-dichloroethane (Surrogate) | LB074326  | %     | -   | 117% | 5 - 9%   | 117%      | 97%       |
| d8-toluene (Surrogate)            | LB074326  | %     | -   | 88%  | 1 - 8%   | 104%      | 79%       |
| Bromofluorobenzene (Surrogate)    | LB074326  | %     | -   | 94%  | 0 - 3%   | 102%      | 96%       |

VPH F Bands

| Parameter                  | QC Units  |       | LOR | MB   | DUP %RPD | LCS       | MS        |
|----------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                            | Reference |       |     |      |          | %Recovery | %Recovery |
| Benzene (F0)               | LB074326  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| TRH C6-C10 minus BTEX (F1) | LB074326  | mg/kg | 25  | <25  | 0%       | 99%       | 110%      |



## METHOD SUMMARY

| - METHOD    | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN002       | Weight of as received sample determined on a 2 decimal place balance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AN040       | A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analsysis by ASS or ICP as per USEPA Method 200.8.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AN040/AN320 | A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.                                                                                                                                                                                                                                                                                                                                                                         |
| AN088       | Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample<br>to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the<br>extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA<br>method 3570 (Micro Organic extraction and sample preparation). Method 3700.                                                                                                                                                                                                                   |
| AN312       | Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid,<br>mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury<br>vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser.<br>Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA<br>3112/3500                                                                                                                                                                                       |
| AN400       | OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)                                                                                                                                                                                                                                                                                                                                                                                                             |
| AN403       | Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available. |
| AN403       | Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.                                                                                                                                                                                                  |
| AN403       | The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependant on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.                                                                                                                                                                 |
| AN420       | (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments<br>and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on<br>USEPA 3500C and 8270D).                                                                                                                                                                                                                                                                                                                                                                                                   |
| AN420       | SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                                                                                                                                                                                                                                                                                                               |
| AN433/AN434 | VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.                                                                                                                                                                                                                                                                        |



## METHOD SUMMARY

| METHOD            | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN433/AN434/AN410 | VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.                                                                                                                                                                                                                                                                   |
| AN602             | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned. |
| AN602             | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AN602             | AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."                                                                                                                                                                                                                                                                                                |
| AN602             | <ul> <li>The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (&lt;0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-</li> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting 11 This analysis is not covered by the scope of QFH QC result is above the upper tolerance accreditation. QFL QC result is below the lower tolerance \*\* Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte Not Validated ۸ NVL Performed by outside laboratory. Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

FOOTNOTES



| Share         Data         Desc         Desc <thdesc< th="">         Desc         Desc         <th< th=""><th></th><th></th><th>SDG<br/>Field ID</th><th>SE137450-1<br/>TP03_1.0-1.1</th><th>QA1</th><th>RPD</th><th>TPA1_1.0</th><th>SE140881-1<br/>D01_180615</th><th>RPD</th><th></th><th>QA4</th><th>RPD</th><th>SE140881-1<br/>TPA1_1.0</th><th>Interlab_D<br/>T01_180615</th><th>RPD</th></th<></thdesc<>                                      |                          |       | SDG<br>Field ID                 | SE137450-1<br>TP03_1.0-1.1 | QA1        | RPD | TPA1_1.0   | SE140881-1<br>D01_180615 | RPD |            | QA4        | RPD | SE140881-1<br>TPA1_1.0 | Interlab_D<br>T01_180615 | RPD       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|---------------------------------|----------------------------|------------|-----|------------|--------------------------|-----|------------|------------|-----|------------------------|--------------------------|-----------|
| Time CD-Cole         ages         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |       | Sampled Date/Time               | 18/03/2015                 | 18/03/2015 |     | 18/06/2015 | 18/06/2015               |     | 19/03/2015 | 19/03/2015 |     | 18/06/2015             | 18/06/2015               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ChemName                 |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| increase         right 0 is Primary 0 2 purchase         out         ut         out        <                                                                                                                                                                                                                                                                                                                                                                                  | TRH C37-C40              | mg/kg | 100                             | <100.0                     | <100.0     | 0   |            |                          |     |            |            |     |                        |                          |           |
| Carbon         Mode ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Control ()         Contro ()         Control ()         Control ()                                                                                                                                                                            | Benzene                  | mg/kg |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Distant         Party 1 0 Primery 0 0 (10000)         0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Indeg (EX)         maybe (1,2) (mmore)         0,2 (0,0)         mapbe (2,2) (mmore)         mapbe (              |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Xene In phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a phomay be a pho </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| system         marks         1.1 Phinary         0.1                                                                                                                                                      |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| SALED and PEX.(F)         Right SDE (F)         Righ SDE (F)         Right SDE (F)         Righ                                                                                                         |                          |       | 0.1 (Primary): 0.5 (Interlab)   | <0.1                       | <0.1       | 0   |            |                          |     |            | <0.5       | 0   |                        |                          |           |
| interstream         mag         11 Finan(1) 05 Interial)         -0.1         -0.1         -0.1         -0.01         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         -0.05         0         -0.1         0         0.0         -0.1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0        0                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Notation         mpkg         10000         100000         120         1000000         120         1000000         120         1000000         120         1000000           Stantin         mpkg         1 (Pimary) 2 (Intentio)         0.50         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                      | C6-C10 less BTEX (F1)    | mg/kg | 25 (Primary): 10 (Interlab)     | <25.0                      | <25.0      | 0   |            |                          |     | <25.0      | <10.0      | 0   |                        |                          |           |
| cond         i Presury 5 (minute)         i Presury 5 (minute) | Hexachlorobenzene        | mg/kg | 0.1 (Primary): 0.05 (Interlab)  | <0.1                       | <0.1       | 0   |            |                          |     | <0.1       | <0.05      | 0   |                        |                          |           |
| Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action         Action<                                                                                                                                                                                                                                                                                   | % Moisture               | mg/kg | 10000                           |                            |            |     | 79000.0    | 99000.0                  | 22  |            |            |     | 79000.0                |                          |           |
| Banglam         mpka         0 Community 30 (minutab)         0.6         0.7         0 S         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead                     | mg/kg | 1 (Primary): 5 (Interlab)       | 8.0                        | 10.0       | 22  | 10.0       | 8.0                      | 22  | 9.0        | 12.0       | 29  | 10.0                   | 12.0                     | 18        |
| Banglam         mpka         0 Community 30 (minutab)         0.6         0.7         0 S         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arsenic                  | mg/kạ | 1 (Primary): 5 (Interlab)       | 1.0                        | 2.0        | 67  | 2.0        | 2.0                      | 0   | 2.0        | <5.0       | 0   | 2.0                    | <5.0                     | 0         |
| Cartanum         mplag         0         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         -0.3         <                                                                                                                                                                                                                                                                                                                                                       | Beryllium                | mg/kg | 0.5 (Primary): 1 (Interlab)     | 0.6                        | 0.7        | 15  |            |                          |     | 0.5        | <1.0       | 0   |                        |                          |           |
| Chrommul (III-V)         mphale         0.5 Pmmun / 2. (Interlate)         9.9         13.0         27         5.9         5.6         5         4.4         5.0         7         5.0         7.0         7           Colsal         mphale         0.5 Pmmu / 2. (Interlate)         2200         200         1         3.0         0         4.2         5.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         4.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                       |                          |       |                                 |                            |            |     | -0.0       | 10.0                     |     |            |            |     |                        |                          |           |
| Geal         make [0.5 (Pinnary) 2. (Instah)         4.0         4.9         20          -         4.2         6.0         17         Image [0.5 (Pinnary) 2. [Instah]           Mangamee         make [0.5 (Pinnary) 5. [Instah]         3.0         5.0         1.0         -0.0         0.0         0.00         0.0         0.00         0.00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.                                                                                                                                                                                                                                                                                                                                                                              |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Cogen         mpdg 10         Primary 15         Check 10         Sole         Sole <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.5</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td>0.5</td> <td>7.0</td> <td></td>                                                                                                                                                                                   |                          |       |                                 |                            |            |     | 0.5        | 0.0                      |     |            |            |     | 0.5                    | 7.0                      |           |
| Mecay         mpkg 0.01 (Pmany) 2.01 (Instable)         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01                                                                                                                                                                                                                                                                                                                                                  | Copper                   | mg/kg | 0.5 (Primary): 5 (Interlab)     | 3.9                        | 5.5        | 34  | 3.8        | 3.5                      | 8   | 3.5        | <5.0       | 0   | 3.8                    | <5.0                     | 0         |
| Nicket         marks B (Frmany) 2 (Interlate)         2.9         3.3         13         4.0         3.1         15         2.6         3.0         14         4.0         5.0         7.0           Zne         marks B (Frmany) 5 (Interlate)         11.0         17.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0         11.0 <td>Manganese</td> <td>mg/kg</td> <td>1 (Primary): 5 (Interlab)</td> <td></td> <td>280.0</td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td>403.0</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                            | Manganese                | mg/kg | 1 (Primary): 5 (Interlab)       |                            | 280.0      | 11  |            |                          |     |            | 403.0      |     |                        |                          |           |
| Selentum         mg/ga         J/Primary 15. (Interlat)                                                                                                                    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Zinc         mpkg 2 (Pinnary): 6 (Instrike)         11.0         11.0         11.0         11.0         11.0         12.0         12.0         10.0         18         12.0         10.0         18         12.0         10.0         18         12.0         10.0         18.0         24.0         40           2.4.007         makka 0 (1) (Pinnary): 0.5 (Instrike)         -0.1         -0.1         -0.05         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |       |                                 |                            |            |     | 4.0        | 3.1                      | 25  |            |            |     | 4.0                    | 5.0                      | 22        |
| 2-00T         marks $1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>16.0</td><td>14.0</td><td>13</td><td></td><td></td><td></td><td>16.0</td><td>24.0</td><td>40</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |       |                                 |                            |            |     | 16.0       | 14.0                     | 13  |            |            |     | 16.0                   | 24.0                     | 40        |
| 44-00E       mgko       0.1 (Primary): 0.05 (Interlab)       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| abit         maple         01/many 105         maple         10/many 105         maple         01/many 105         01                                                                                                                                                                       |                          |       | 0.1                             |                            |            |     |            |                          |     |            |            | .   |                        |                          | $\square$ |
| Aldrin         morgla         0.1         (morgla         <                                                                                                                                                                                                                                                                                                                   |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | +         |
| bBHC         mpkg 0.1 (Pinnary).0.5 (Interlab)         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.5         0         1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.0         1         40.1         40.1         40.0         1         40.1         40.1         40.0         1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                               |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| apama-Chordane         mg/kg         0.1         PO.1                                                                                                                                                                                                                                                                                                                                                         |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| dBHC         mgkg 0.1 (Primary) 0.05 (Interlab)         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |       |                                 |                            |            |     |            |                          |     | <0.1       | <0.05      | 0   |                        |                          |           |
| DDD         mg/kg         0.1         (Primary)         0.5                                                                                                                                                                                                                                                                                           |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| DDT         mg/kg         0.1 (Pinary): 0.2 (Interlab)         -0.1         -0.1         -0.1         -0.2         0.2         -0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2                                                                                                                                                                                                                                                                                                                                                                                           |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Diektrin         mg/kg         0.2 (P(intrary): 0.5 (Interlab)         -0.2         -0.2         0         -0.2         -0.2         -0.0         -0.2         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0                                                                                                                                                                                                                                                                                                                                                   |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Endosulfan II         mg/kg         0.2 (Pinnary): 0.05 (Intertab)         40.2         40.2         40.05         0         1           Endosulfan Support         mg/kg         0.2 (Pinnary): 0.05 (Intertab)         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1                                                                                                                                                                                                                                                                                                                                             |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Endouling subplate         mg/kg         0.1 $< 0.1$ $< 0.1$ $< 0.1$ $< 0.05$ 0 $< 0.1$ Endrin         mg/kg         0.1         (Pinary): 0.05         (Intertab) $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.1$ $< 0.05$ $0$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.05$ $0$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.05$ $0$ $< 0.1$ $< 0.05$ $0$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.0$ $< 0.0$ $< 0.0$ $< 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Endra         Implica         0.2         (-0.2         (-0.2         (-0.2         (-0.1         (-0.5)         (-0.1         (-0.5)         (-0.1         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.5)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)         (-0.1)                                                                                                                                                                                                                                                                                             |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Endmail         and the hyde         mg/kg         0.1         ( $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.05$ $0$ $g$ -BPC (Lindane)         mg/kg         0.1 (Pimary): 0.05 (Interlab) $-0.1$ $-0.1$ $0.05$ $0$ $-0.1$ $-0.05$ $0$ $-0.1$ $-0.05$ $0$ $-0.1$ $-0.05$ $0$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.2$ $-0.2$ $-0.05$ $0$ $-0.2$ $-0.05$ $0$ $-0.5$ $0$ $-0.5$ $0$ $-0.5$ $0$ $-0.5$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Endmin ketone         mg/kg         0.1         (Phinary): 0.05         (Interlat)         (Phinary): 0.05         (Phinary): 0.05                                                                                                                          |                          | mg/kg | 0.1 (Primary): 0.05 (Interlab)  |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Heptachior         mg/kg         0.1         (Phimary): 0.05         (Interlate)         (Phimary): 0.05                                                                                                                      |                          | mg/kg | 0.1 (Primary): 0.05 (Interlab)  |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Hegtachor epoxide         mg/kg         0.1         (-0.1         (-0.1         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-0.0)         (-                                                                                                                                                                                                                                                                                   |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Methoxychlor         mg/kg         0.1         (+0.1)         0.1         (+0.1)         0         (+0.1)         (+0.1)         0         (+0.1)         (+0.1)         0         (+0.1)         (+0.1)         0         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.1)         (+0.                                                                                                                                                                                                                                                                                            |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| o.p-DDD         mg/kg         0.1         <0.1         <0.1         0                                                                                                                  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| o.gDDE         marka         0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1                                                                                                                                                                                                                                                                                                                                                                 |                          |       |                                 |                            |            |     |            |                          |     | -0.1       | -0.2       |     |                        |                          |           |
| Acinophos methyl         mg/kg         0.2         Processor                                                                                                                                                                                                            | o,p'-DDE                 | mg/kg | 0.1                             |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| Bromophosethyl         mg/kg         02. (Primary): 0.05. (Interlab)         <0.2         <0.2         <0.2         <0.2         <0.05         0             Diazinon         mg/kg         0.2 (Primary): 0.05. (Interlab)         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trans-Nonachlor          | mg/kg | 0.1                             | <0.1                       | <0.1       | 0   |            |                          |     |            |            | I   |                        |                          | $\square$ |
| Bromophosethyl         mg/kg         02. (Primary): 0.05. (Interlab)         <0.2         <0.2         <0.2         <0.2         <0.05         0             Diazinon         mg/kg         0.2 (Primary): 0.05. (Interlab)         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Azinophos mothul         | ma/ka | 0.2 (Primary): 0.05 (Intorials) | <0.2                       | <0.2       | 0   |            |                          |     | <0.0       | <0.05      | 0   |                        |                          | $\vdash$  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlorpyrifos             |       | 0.2 (Primary): 0.05 (Interlab)  | <0.2                       | <0.2       | 0   |            |                          |     | <0.2       | <0.05      | 0   |                        |                          |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | $\square$ |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | $\vdash$  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | +         |
| Malation         mg/kg         0.2         (P/mary): 0.05         (Interlab) $0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$ $< 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |       |                                 |                            |            |     |            |                          |     |            | 2.00       | Ľ   |                        |                          |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Malathion                |       |                                 | <0.2                       | <0.2       | 0   |            |                          |     | <0.2       | <0.05      | 0   |                        |                          |           |
| Naphthalene         mg/kg         0.1         (-1.1.         (-0.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.1.         (-1.                                                                                                                                                                                                                                                                                      | Methidathion             | mg/kg | 0.5                             | <0.5                       | <0.5       | 0   |            |                          |     |            |            |     |                        |                          |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | $\square$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Naprithalene             | mg/kg | U.1 (Primary): 1 (Interlab)     | <0.1                       | <0.1       | U   |            |                          |     | <0.1       | <1.0       | U   |                        |                          | $\vdash$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Isodrin                  | mg/ka | 0.1                             | <0.1                       | <0.1       | 0   |            |                          |     | 1          |            | 1   | 1                      |                          | +         |
| Parathion         mg/kg         0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2                                                                                                                                                                                                                                                                                                                                                              | Mirex                    | mg/kg | 0.1                             | <0.1                       | <0.1       | 0   |            |                          |     |            |            | Ĺ   |                        |                          |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parathion                |       |                                 | <0.2                       | <0.2       | 0   |            |                          |     | <0.2       | <0.2       | 0   |                        |                          | $\square$ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C10 C16                  | ma/ka | 25 (Primonu): 50 (Intoriate)    | <25.0                      | <25.0      | 0   |            |                          |     | <25.0      | <50.0      | 0   |                        |                          | $\vdash$  |
| C34-C40         mg/kg 120 (Primary): 100 (Interlab)         <120.0         <120.0         0         <120.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0         <100.0         0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><math>\vdash</math></td>                                                                                                                                                                                      |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | $\vdash$  |
| F2-MAPHTHALENE         mg/kg         26 (Primary): 50 (Interlab)         <25.0         <25.0         <25.0         <25.0         <26.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C34-C40                  |       |                                 |                            | <120.0     | 0   |            |                          |     |            |            | 0   |                        |                          |           |
| C10 - C14         mg/kg (2) (Primary): 50 (Interlab)         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <20.0         <21.0         <21.0         <21.0         <21.0         <21.0         <21.0         <21.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0         <22.0                                                                                                                                                                                                                                                                                                            | F2-NAPHTHALENE           | mg/kg | 25 (Primary): 50 (Interlab)     | <25.0                      | <25.0      | 0   |            |                          |     | <25.0      | <50.0      | 0   |                        |                          |           |
| C15 - C28         mg/kg         45 (Primary): 100 (Interiab)         <45.0         <45.0         <         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | mg/kg | 20 (Primary): 10 (Interlab)     |                            |            |     |            |                          |     |            |            |     |                        |                          | $\square$ |
| C29-C36         mg/kg         45 (Primary): 100 (Interlab)         <45.0         <45.0         0         <45.0         <100.0         0           +C10-C36 (Sum of total)         mg/kg         110 (Primary): 50 (Interlab)         <110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | +         |
| +C10 - C38 (Sum of total) [mg/kg 110 (Primary): 50 (Interlab)         <110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          | $\vdash$  |
| C10 - C40 (Sum of total)         mg/kg         210 (Primary): 50 (Interlab)         <210.0         <210.0         0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0         <210.0                                                                                                                                                                                                                                                                                |                          |       |                                 |                            |            |     |            |                          |     |            |            |     |                        |                          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C10 - C40 (Sum of total) | mg/kg | 210 (Primary): 50 (Interlab)    | <210.0                     | <210.0     | 0   |            |                          |     | <210.0     | <50.0      | 0   |                        |                          |           |
| *RPDs have only been considered where a concentration is greater than 1 times the EQL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C6-C10                   |       |                                 |                            |            | 0   |            |                          |     | <25.0      | <10.0      | 0   |                        |                          |           |



#### Sampling Round 1

| Sample Name | Sample Depth | Method            | Lab | Report Number | Date Sampled | Asbestos             |
|-------------|--------------|-------------------|-----|---------------|--------------|----------------------|
| TP01        | 0.1-0.2      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | No Asbestos Detected |
| TP02        | 0.5-0.6      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | No Asbestos Detected |
| TP03        | 1.0-1.1      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | No Asbestos Detected |
| TP04        | 0.1-0.2      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | No Asbestos Detected |
| TP05        | 2.0-2.2      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | No Asbestos Detected |
| TP06        | 3.0-3.1      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | No Asbestos Detected |
| TP07        | 0.5          | Detect/Non-detect | SGS | SE137450A R0  | 18/03/2015   | No Asbestos Detected |
| TP07        | 1.0-1.2      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | Asbestos Detected    |
| TP07        | 1.8-2.0      | Detect/Non-detect | SGS | SE137450A R0  | 18/03/2015   | No Asbestos Detected |
| TP08        | 1.1-1.2      | Detect/Non-detect | SGS | SE137450 R0   | 18/03/2015   | No Asbestos Detected |

| Frag01 (425 g) TP07-1.0-1.2 1.0-1.2 | Detect/Non-detect | SGS | SE137450 R0 | 18/03/2015 | Asbestos Detected |
|-------------------------------------|-------------------|-----|-------------|------------|-------------------|
|-------------------------------------|-------------------|-----|-------------|------------|-------------------|

#### Sampling Round 2

| Sample Name | Sample Depth |                   | Lab Report Number |             | Date Sampled | Asbestos             |
|-------------|--------------|-------------------|-------------------|-------------|--------------|----------------------|
| TPA1        | 0.5          | Detect/Non-detect | SGS               | SE140881 R0 | 18/06/2015   | No Asbestos Detected |
| TPA1        | 1            | Detect/Non-detect | SGS               | SE140881 R0 | 18/06/2015   | No Asbestos Detected |
| TPA2        | 0.2          | Detect/Non-detect | SGS               | SE140881 R0 | 18/06/2015   | No Asbestos Detected |
| TPA2        | 1            | Detect/Non-detect | SGS               | SE140881 R0 | 18/06/2015   | No Asbestos Detected |
| ТРАЗ        | 0.5          | Detect/Non-detect | SGS               | SE140881 R0 | 18/06/2015   | No Asbestos Detected |
| ТРАЗ        | 1            | Detect/Non-detect | SGS               | SE140881 R0 | 18/06/2015   | No Asbestos Detected |



|                                                                     |       |         |         | Me                | etals  |         |            |       | Asbestos         |
|---------------------------------------------------------------------|-------|---------|---------|-------------------|--------|---------|------------|-------|------------------|
|                                                                     | Lead  | Arsenic | Cadmium | Chromium (III+VI) | Copper | Mercury | Nickel     | Zinc  | Estimated Fibres |
|                                                                     | mg/kg | mg/kg   | mg/kg   | mg/kg             | mg/kg  | mg/kg   | mg/kg      |       | mg/kg            |
| EQL                                                                 | 1     | 1       | 0.3     | 0.5               | 0.5    | 0.01    | 0.5        | 2     | 100              |
| NEPM 2013 Table 1A(1) HILs Rec C Soil                               | 600   | 300     | 90      |                   | 17000  | 80      | 1200       | 30000 |                  |
| NEPM 2013 Table 1A(1) HILs Res A Soil                               | 300   | 100     | 20      |                   | 6000   | 40      | 400        | 7400  |                  |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Comm/Ind                         | 440   | 80      |         |                   | 180    |         | <u>190</u> | 460   |                  |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Areas of Ecological Significance | 110   | 20      |         |                   | 75     |         | 40         | 100   |                  |
| ACT 2000 Inert Waste (CT1)                                          | 10    | 10      | 2       |                   |        | 0.4     | 4          |       |                  |
| ACT 2000 General Solid Waste (CT2)                                  | 100   | 100     | 20      |                   |        | 4       | 40         |       |                  |
| ACT 2000 Industrial Waste (CT3)                                     | 400   | 400     | 80      |                   |        | 16      | 160        |       |                  |

#### Field\_ID Sample\_Depth\_Range Sampled\_Date-Time Lab\_Report\_Number

| D01_180615 |     | 18/06/2015 | SE140881-1 | 8  | 2 | <0.3 | 5.6 | 3.5 | <0.01 | 3.1 | 14 | - |
|------------|-----|------------|------------|----|---|------|-----|-----|-------|-----|----|---|
| TP3A_0.5   | 0.5 | 18/06/2015 | SE140881-1 | 12 | 2 | <0.3 | 5.6 | 4.2 | <0.01 | 3.2 | 13 | 0 |
| TP3A_1.0   | 1   | 18/06/2015 | SE140881-1 | 9  | 2 | <0.3 | 5.6 | 3.1 | <0.01 | 3.2 | 14 | 0 |
| TPA1_0.5   | 0.5 | 18/06/2015 | SE140881-1 | 10 | 2 | <0.3 | 5.9 | 3.5 | <0.01 | 2.7 | 16 | 0 |
| TPA1_1.0   | 1   | 18/06/2015 | SE140881-1 | 10 | 2 | <0.3 | 5.9 | 3.8 | <0.01 | 4   | 16 | 0 |
| TPA2_0.2   | 0.2 | 18/06/2015 | SE140881-1 | 17 | 2 | <0.3 | 15  | 4.7 | 0.02  | 3.3 | 12 | 0 |
| TPA2_1.0   | 1   | 18/06/2015 | SE140881-1 | 8  | 2 | <0.3 | 3.2 | 2.1 | <0.01 | 2.6 | 17 | 0 |

Table 1 b. Chemical Results for the Second Round of Sampling



| SMEC                                                                         |        |        |         |           |         |         |         |                    |                    |         |                | 300240 | )2      |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        | Т       | able 1. S | oil Chem  | ical Result |
|------------------------------------------------------------------------------|--------|--------|---------|-----------|---------|---------|---------|--------------------|--------------------|---------|----------------|--------|---------|------------|----------|-------|---------|---------------|--------|------------|------|-------|------------|---------|------------|-------|--------|---------|--------|---------|-----------|-----------|-------------|
|                                                                              |        |        |         |           |         | Hyd     | rocarbo | n                  |                    |         |                |        |         |            |          |       |         |               |        | Me         | tals |       |            |         |            |       |        |         |        |         |           |           |             |
|                                                                              |        | 4      | 0       | HTHALENE  | C14     | C28     |         | c36 (Sum of total) | C40 (Sum of total) |         | less BTEX (F1) |        | 17-C40  |            | Ę        |       | Ę       | mium (III+VI) |        |            |      | nese  |            | nium    |            | ~     |        |         |        |         |           | ane (cis) | a-Chlordane |
|                                                                              | C10-C1 | C16-C3 | C34-C40 | F2-NAPHTH | C10 - C | C15 - C | C29-C36 | +C10 -             | C10 - C            | ce - c9 | C6-C10         | C6-C10 | TRH C3: | Arsenic    | Berylliu | Boron | Cadmium | Chrom         | Cobalt | Coppe      | Lead | Manga | Nickel     | Selenii | Zinc       | Mercu | 2,4-DD | 4,4-DDE | a-BHC  | Aldrin  | b-BHC     | Chlord    | gamm        |
|                                                                              |        | mg/kg  | mg/kg   | mg/kg     | mg/kg r | ng/kg r | ng/kg   | mg/kg              | mg/kg              | mg/kg   | mg/kg          | mg/kg  | mg/kg   | mg/kg      | mg/kg    | mg/kg | mg/kg   | mg/kg         | mg/kg  | mg/kg      |      |       |            | mg/kg   | mg/kg      | mg/kg | mg/k   | g mg/k  | g mg/k | .g mg/k | g mg/kg   | mg/kg     | mg/kg       |
| EQL                                                                          | 25     | 90     | 120     | 25        | 20      | 45      | 45      | 110                | 210                | 20      | 25             | 25     | 100     |            | 0.5      |       |         | 0.5           |        |            | 1    | 1     |            |         | 2          | 0.01  | 0.1    | 0.1     | 0.1    | 0.1     | 0.1       | 0.1       | 0.1         |
| NEPM 2013 Table 1A(1) HILs Rec C Soil                                        |        |        |         |           |         |         |         |                    |                    |         |                |        |         | - <u>6</u> |          | 20000 |         |               |        |            |      |       |            |         | 30000      | 80    |        |         |        |         |           |           |             |
| NEPM 2013 Table 1A(1) HILs Res A Soil                                        |        |        |         |           |         |         |         |                    |                    |         |                |        |         |            | 60       | 4500  | 20      |               | 100    |            |      | 3800  | 400        | 200     |            | 40    |        |         |        |         |           |           |             |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Comm/Ind                                  |        |        |         |           |         |         |         |                    |                    |         |                |        |         | <u>80</u>  |          |       |         |               |        | <u>180</u> |      |       | <u>190</u> |         | <u>460</u> |       | _      |         |        |         |           |           |             |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Areas of Ecological Significance          |        |        |         |           |         |         |         |                    |                    |         |                |        |         | 20         |          |       |         |               |        | 75         | 110  |       | 40         |         | 100        |       |        |         |        |         |           |           |             |
| NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand              |        |        |         |           |         |         |         |                    |                    |         |                |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 0-1m                                                                         |        |        |         | NL        |         |         |         |                    |                    |         | NL             |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 1-2m                                                                         |        |        |         | NL        |         |         |         |                    |                    |         | NL             |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 2-4m                                                                         |        |        |         | NL        |         |         |         |                    |                    |         | NL             |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| >4m                                                                          |        |        |         | NL        |         |         |         |                    |                    |         | NL             |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand            |        |        |         |           |         |         |         |                    |                    |         |                |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 0-1m                                                                         |        |        |         | 110       |         |         |         |                    |                    |         | 45             |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 1-2m                                                                         |        |        |         | 240       |         |         |         |                    |                    |         | 70             |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 2-4m                                                                         |        |        |         | 440       |         |         |         |                    |                    |         | 110            |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| >4m                                                                          |        |        |         | NL        |         |         |         |                    |                    |         | 200            |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil                        |        |        |         |           |         |         |         |                    |                    |         |                |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 0-2m                                                                         |        | 300    | 2800    | 120       |         |         |         |                    |                    |         | 180            |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil |        |        |         |           |         |         |         |                    |                    |         |                |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| 0-2m                                                                         |        | -      | -       | 25        |         |         |         |                    |                    |         | 125            |        |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| NEPM 2013 Table 1B(7) Management Limits in Comm and Ind, Coarse Soil         | 1000   | 3500   | 10,000  |           |         |         |         |                    |                    |         |                | 700    |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil       | 1000   | 2500   | 10000   |           |         |         |         |                    |                    |         |                | 700    |         |            |          |       |         |               |        |            |      |       |            |         |            |       |        |         |        |         |           |           |             |
| ACT 2000 Inert Waste (CT1)                                                   |        |        |         |           |         |         |         | 5000               |                    | 650     |                |        |         | 10         | 2        |       | 2       |               |        |            | 10   |       | 4          | 2       |            | 0.4   |        |         |        |         |           |           |             |
| ACT 2000 GeneraL Solid Waste (CT2)                                           |        |        |         |           |         |         |         | 10,000             |                    | 650     |                |        |         | 100        | 20       |       | 20      |               |        |            | 100  |       | 40         | 20      |            | 4     |        |         |        |         |           |           |             |
| ACT 2000 Industrial Waste (CT3)                                              |        |        |         |           |         |         |         | 40,000             |                    | 2600    |                |        |         | 400        | 80       |       | 80      |               |        |            | 400  |       | 160        | 80      |            | 16    |        |         |        |         |           |           |             |

| Field_ID     | LocCode      | Sample Depth | Sampled Date |     |     |      |     |     |     |     |      |      |     |     |     |      |   |      |    |      |     |     |     |    |     |     |    |    |        |      |      |      |      |      |      |      |
|--------------|--------------|--------------|--------------|-----|-----|------|-----|-----|-----|-----|------|------|-----|-----|-----|------|---|------|----|------|-----|-----|-----|----|-----|-----|----|----|--------|------|------|------|------|------|------|------|
| QA1          | TP03_1.0-1.1 |              | 19/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | 0.7  | <5 | <0.3 | 13  | 4.9 | 5.5 | 10 | 280 | 3.3 | <3 | 11 | 0.01   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| TP01_0.1-0.2 | TP01         | 0.1-0.2      | 18/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | <0.5 | <5 | <0.3 | 8.3 | 3.8 | 4.2 | 12 | 290 | 2.5 | <3 | 12 | 0.01   | -    | -    | -    | -    | -    | -    | -    |
| TP02_0.5-0.6 | TP02         | 0.5-0.6      | 18/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | <0.5 | <5 | <0.3 | 3.8 | 2.4 | 2.6 | 8  | 130 | 1.7 | <3 | 10 | <0.01  | -    | -    | -    | -    | -    | -    | -    |
| TP03_1.0-1.1 | TP03         | 1-1.1        | 18/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 1 | 0.6  | <5 | <0.3 | 9.9 | 4   | 3.9 | 8  | 250 | 2.9 | <3 | 13 | 0.01   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| TP04_0.1-0.2 | TP04         | 0.1-0.2      | 18/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | 0.7  | <5 | <0.3 | 13  | 6   | 4.9 | 11 | 410 | 3.1 | <3 | 14 | 0.01   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| TP05_2.0-2.2 | TP05         | 2-2.2        | 18/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | 1.1  | <5 | <0.3 | 11  | 4.2 | 8.7 | 9  | 57  | 7.7 | <3 | 10 | 0.05   | -    | -    | -    | -    | -    | -    | -    |
| TP06_3.0-3.1 | TP06         | 3-3.1        | 18/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 1 | 0.9  | <5 | <0.3 | 6.4 | 4.5 | 6.7 | 9  | 110 | 6.2 | <3 | 8  | 0.04   | -    | -    | -    | -    | -    | -    | -    |
| TP07_1.0-1.2 | TP07         | 1-1.2        | 19/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | 0.7  | <5 | <0.3 | 13  | 3.3 | 4.1 | 10 | 200 | 2.6 | <3 | 13 | < 0.01 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| TP08_1.1-1.2 | TP08         | 1.1-1.2      | 19/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | 0.5  | <5 | <0.3 | 6.4 | 4.2 | 3.5 | 9  | 230 | 2.6 | <3 | 12 | < 0.01 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| TP09_0.4-0.5 | TP09         | 0.4-0.5      | 19/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | 0.6  | <5 | <0.3 | 5.5 | 3.8 | 3.3 | 10 | 280 | 2.6 | <3 | 12 | <0.01  | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| TP10_0.1-0.2 | TP10         | 0.1-0.2      | 19/03/2015   | <25 | <90 | <120 | <25 | <20 | <45 | <45 | <110 | <210 | <20 | <25 | <25 | <100 | 2 | <0.5 | <5 | <0.3 | 13  | 4.2 | 3.6 | 12 | 400 | 2.3 | <3 | 8  | 0.01   | -    | -    | -    | -    | -    | -    | -    |



|                                                                              |       |     |            |                   |             |          |              |               |                     |        |                 |               | OC              | P/OPP      |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
|------------------------------------------------------------------------------|-------|-----|------------|-------------------|-------------|----------|--------------|---------------|---------------------|--------|-----------------|---------------|-----------------|------------|--------------------|------------|--------|-----------|--------|---------|----------|------------------|-----------------|--------------|----------|------------|------------|--------|--------------|-----------|--------------|-----------|-----------------|------------------------|---------------------|
|                                                                              | d-BHC | 000 | DDT        | Aldrin + Dieldrin | DDT+DDE+DDD | Dieldrin | Endosulfan I | Endosulfan II | Endosulfan suiphate | Endrin | Endrin aldehyde | Endrin ketone | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Hexachloro | sodrin |           | Mirex  | o,p-DDD | o,p'-DDE | Azinophos methyl | Bromophos-ethyl | Chlorpyrifos | Diazinon | Dichlorvos | Dimethoate | Ethion | Fenitrothion | Malathion | Methidathion | Parathion | trans-Nonachlor | Benzo[b+j]fluoranthene | 1-Methylnaphthalene |
|                                                                              |       |     |            | mg/kg             | mg/kg       | mg/kg    | mg/kg        | mg/kg         | mg/kg               | mg/kg  | mg/kg           | mg/kg         | g mg/kg         | g mg/k     | 'kg   mg/          | kg mg/     | kg mg/ | /kg   mg/ | kg mg/ | kg mg/k | g mg/kg  | mg/kg            | mg/kg           | mg/kg        | mg/kg    | mg/kg      | mg/kg      | mg/kg  | mg/kg        | mg/kg     | mg/kg        | mg/kg     | mg/kg           | mg/kg                  | mg/kg               |
| EQL                                                                          | 0.1   | 0.1 | 0.1        |                   |             | 0.2      | 0.2          | 0.2           | 0.1                 |        | 0.1             | 0.1           | 0.1             |            |                    |            |        | .1 0.1    |        |         | 0.1      | 0.2              | 0.2             |              | 0.5      | 0.5        | 0.5        | 0.2    | 0.2          | 0.2       | 0.5          | 0.2       | 0.1             | 0.1                    | 0.1                 |
| NEPM 2013 Table 1A(1) HILs Rec C Soil                                        |       |     |            |                   | 400         |          |              |               |                     | 20     |                 |               |                 | 10         |                    | 10         |        |           | 0 20   |         |          |                  |                 | 250          |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1A(1) HILs Res A Soil                                        |       |     |            | 6                 | 240         |          |              |               |                     | 10     |                 |               |                 | 6          |                    | 10         |        | 30        | 0 10   |         |          |                  |                 | 160          |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Comm/Ind                                  |       |     | <u>640</u> |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Areas of Ecological Significance          |       |     | 3          |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand              |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 0-1m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 1-2m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 2-4m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| >4m                                                                          |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand            |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 0-1m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 1-2m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 2-4m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| >4m                                                                          |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil                        |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 0-2m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| 0-2m                                                                         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1B(7) Management Limits in Comm and Ind, Coarse Soil         |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil       |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |
| ACT 2000 Inert Waste (CT1)                                                   |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 | 0.4          |          |            |            |        |              |           |              |           |                 |                        |                     |
| ACT 2000 GeneraL Solid Waste (CT2)                                           |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 | 4            |          |            |            |        |              |           |              |           |                 |                        |                     |
| ACT 2000 Industrial Waste (CT3)                                              |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 | 16           |          |            |            |        |              |           |              |           |                 |                        |                     |
|                                                                              |       |     |            |                   |             |          |              |               |                     |        |                 |               |                 |            |                    |            |        |           |        |         |          |                  |                 |              |          |            |            |        |              |           |              |           |                 |                        |                     |

| Field_ID     | LocCode      | Sample Depth | Sampled Date |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|--------------|--------------|--------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| QA1          | TP03_1.0-1.1 |              | 19/03/2015   | <0.1 | <0.1 | <0.1 | <0.3 | <0.3 | <0.2 | <0.2 | <0.2 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | <0.2 | <0.5 | <0.5 | <0.5 | <0.2 | <0.2 | <0.2 | <0.5 | <0.2 | <0.1 | -    | -    |
| TP01_0.1-0.2 | TP01         | 0.1-0.2      | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| TP02_0.5-0.6 | TP02         | 0.5-0.6      | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| TP03_1.0-1.1 | TP03         | 1-1.1        | 18/03/2015   | <0.1 | <0.1 | <0.1 | <0.3 | <0.3 | <0.2 | <0.2 | <0.2 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | <0.2 | <0.5 | <0.5 | <0.5 | <0.2 | <0.2 | <0.2 | <0.5 | <0.2 | <0.1 | <0.1 | <0.1 |
| TP04_0.1-0.2 | TP04         | 0.1-0.2      | 18/03/2015   | <0.1 | <0.1 | <0.1 | <0.3 | <0.3 | <0.2 | <0.2 | <0.2 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | <0.2 | <0.5 | <0.5 | <0.5 | <0.2 | <0.2 | <0.2 | <0.5 | <0.2 | <0.1 | <0.1 | <0.1 |
| TP05_2.0-2.2 | TP05         | 2-2.2        | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | - 1  |
| TP06_3.0-3.1 | TP06         | 3-3.1        | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| TP07_1.0-1.2 | TP07         | 1-1.2        | 19/03/2015   | <0.1 | <0.1 | <0.1 | <0.3 | <0.3 | <0.2 | <0.2 | <0.2 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | <0.2 | <0.5 | <0.5 | <0.5 | <0.2 | <0.2 | <0.2 | <0.5 | <0.2 | <0.1 | <0.1 | <0.1 |
| TP08_1.1-1.2 | TP08         | 1.1-1.2      | 19/03/2015   | <0.1 | <0.1 | <0.1 | <0.3 | <0.3 | <0.2 | <0.2 | <0.2 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | <0.2 | <0.5 | <0.5 | <0.5 | <0.2 | <0.2 | <0.2 | <0.5 | <0.2 | <0.1 | <0.1 | <0.1 |
| TP09_0.4-0.5 | TP09         | 0.4-0.5      | 19/03/2015   | <0.1 | <0.1 | <0.1 | <0.3 | <0.3 | <0.2 | <0.2 | <0.2 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | <0.2 | <0.5 | <0.5 | <0.5 | <0.2 | <0.2 | <0.2 | <0.5 | <0.2 | <0.1 | <0.1 | <0.1 |
| TP10_0.1-0.2 | TP10         | 0.1-0.2      | 19/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |



|                                                                                                                                 |                       |              |                |            |                    |                 | P/                   | AH and P              | СВ       |                       |              |          |                         |             |                     |              |        |         |              |             | BT      | EX         |                |            |              | ESDAT Com                   | bined Cor                          | npounds                              |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|----------------|------------|--------------------|-----------------|----------------------|-----------------------|----------|-----------------------|--------------|----------|-------------------------|-------------|---------------------|--------------|--------|---------|--------------|-------------|---------|------------|----------------|------------|--------------|-----------------------------|------------------------------------|--------------------------------------|
|                                                                                                                                 | . 2-methylnaphthalene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a) anthracene | Benzo(a) pyrene | Benzo(g,h,i)perylene | Benzo(k) fluoranthene | Chrysene | Dibenz(a,h)anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | Naphthalene | PAHs (Sum of total) | Phenanthrene | Pyrene | Benzene | Ethylbenzene | Naphthalene | Toluene | Total BTEX | Xylene (m & p) | Xylene (o) | Xylene Total | PAH (total, NSW Waste 2008) | Pesticides (total, NSW Waste 2008) | Scheduled chemicals (NSW Waste 2008) |
|                                                                                                                                 |                       | -            |                |            |                    |                 |                      |                       |          |                       |              |          |                         |             |                     |              | mg/kg  |         |              |             |         |            |                |            |              | mg/kg                       | mg/kg                              | mg/kg                                |
| EQL                                                                                                                             | 0.1                   | 0.1          | 0.1            | 0.1        | 0.1                | 0.1             | 0.1                  | 0.1                   | 0.1      | 0.1                   | 0.1          | 0.1      | 0.1                     | 0.1         | -                   | 0.1          | 0.1    | 0.1     | 0.1          | 0.1         | 0.1     | 0.6        | 0.2            | 0.1        | 0.3          |                             |                                    |                                      |
| NEPM 2013 Table 1A(1) HILs Rec C Soil                                                                                           |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         |             | 300                 |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| NEPM 2013 Table 1A(1) HILs Res A Soil                                                                                           |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | 0==         | 300                 |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Comm/Ind                                                                                     | _                     |              |                |            |                    |                 |                      |                       |          |                       |              | <u> </u> |                         | <u>370</u>  | <u> </u>            |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| NEPM 2013 Table 1B(1,2,3,4,5) EILs Areas of Ecological Significance                                                             |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | 10          |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand                                                                 |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         |             |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| 0-1m                                                                                                                            |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | NL          |                     |              |        | NL      | NL           | NL          | NL      |            |                |            | NL           |                             |                                    |                                      |
| 1-2m                                                                                                                            |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | NL          |                     |              |        | NL      | NL           | NL          | NL      |            |                |            | NL           |                             |                                    |                                      |
| 2-4m                                                                                                                            |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | NL          |                     |              |        | NL      | NL           | NL          | NL      |            |                |            | NL           |                             |                                    |                                      |
| >4m                                                                                                                             | _                     |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | NL          |                     |              |        | NL      | NL           | NL          | NL      |            |                |            | NL           |                             |                                    |                                      |
| NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand                                                               | _                     | <u> </u>     |                |            | <u> </u>           | <u> </u>        |                      | <u> </u>              |          |                       |              | <u> </u> |                         |             |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| 0-1m                                                                                                                            | _                     |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | 3           |                     |              |        | 0.5     | 55           | 3           | 160     |            |                |            | 40           |                             |                                    |                                      |
| 1-2m                                                                                                                            | _                     | <u> </u>     | ļ              |            |                    | <u> </u>        |                      |                       |          |                       |              |          |                         | NL          |                     |              |        | 0.5     | NL           | NL          | 220     |            |                |            | 60           |                             |                                    |                                      |
| 2-4m                                                                                                                            | _                     | <u> </u>     | ļ              |            |                    | <u> </u>        |                      |                       |          |                       |              |          |                         | NL          |                     |              |        | 0.5     | NL           | NL          |         |            |                |            | 95           |                             |                                    |                                      |
| >4m                                                                                                                             |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         | NL          |                     |              |        | 0.5     | NL           | NL          | 540     |            |                |            | 170          |                             |                                    |                                      |
| NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil                                                                           | _                     |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         |             |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| 0-2m                                                                                                                            |                       |              |                |            |                    | 0.7             |                      |                       |          |                       |              |          |                         |             |                     |              |        | 50      | 70           |             | 85      |            |                |            | 105          |                             |                                    |                                      |
| NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil                                                    |                       | <u> </u>     |                |            |                    | <u> </u>        |                      |                       |          |                       |              |          |                         |             |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| 0-2m                                                                                                                            |                       |              |                |            |                    | 1.4             |                      |                       |          |                       |              |          |                         |             |                     |              |        | 8       | 1.5          |             | 10      |            |                |            | 10           |                             |                                    |                                      |
| NEPM 2013 Table 1B(7) Management Limits in Comm and Ind, Coarse Soil                                                            |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         |             |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil                                                          |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         |             |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| ACT 2000 Inert Waste (CT1)                                                                                                      |                       |              |                |            |                    | 0.08            |                      |                       |          |                       |              |          |                         |             | 200                 |              |        | 1       | 60           |             | 28.8    |            |                |            | 100          |                             |                                    |                                      |
| ACT 2000 GeneraL Solid Waste (CT2)                                                                                              |                       |              |                |            |                    | 0.8             |                      |                       |          |                       |              |          |                         |             | 200                 | _            |        | 10      | 600          |             | 288     |            |                |            | 1000         |                             |                                    |                                      |
| ACT 2000 Industrial Waste (CT3)                                                                                                 |                       |              |                |            |                    | 3.2             |                      |                       |          |                       |              |          |                         |             | 800                 |              |        | 40      | 2400         |             | 1152    |            |                |            | 4000         |                             |                                    |                                      |
|                                                                                                                                 |                       |              |                |            |                    |                 |                      |                       |          |                       |              |          |                         |             |                     |              |        |         |              |             |         |            |                |            |              |                             |                                    |                                      |
| Field_ID LocCode Sample Depth Sampled Date                                                                                      |                       |              | 1              |            | 1                  |                 |                      | 1                     |          |                       |              | 1        |                         |             | 1                   | 1            |        |         |              |             |         | 0.0        | 0.0            |            | 0.5          |                             |                                    |                                      |
| QA1 TP03_1.0-1.1 19/03/2015                                                                                                     | -                     |              | -              | -          | -                  | -               | -                    | -                     | -        | -                     | -            | -        | -                       | -           | -                   | -            | -      | <0.1    |              | <0.1        |         | <0.6       |                |            | <0.3         | <0.1                        | <2.1                               | <1.6                                 |
| TP01_0.1-0.2         TP01         0.1-0.2         18/03/2015                                                                    | -                     | -            | -              | -          | -                  | -               | -                    | -                     | -        | -                     | -            | -        | -                       | -           | -                   | -            | -      | <0.1    | <0.1         | <0.1        | <0.1    |            | <0.2           | <0.1       |              | <0.1                        | -                                  | -                                    |
| TP02_0.5-0.6 TP02 0.5-0.6 18/03/2015                                                                                            | -                     | -            | -              | -          | -                  | -               | -                    | -                     | -        | -                     | -            | -        | -                       | -           | -                   | -            | -      | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <0.1                        | -                                  | -                                    |
| TP03_1.0-1.1 TP03 1-1.1 18/03/2015                                                                                              | <0.1                  |              | <0.1           | <0.1       | <0.1               | <0.1            | <0.1                 | <0.1                  | <0.1     | <0.1                  | <0.1         | <0.1     | <0.1                    | <0.1        | <0.8                | <0.1         | <0.1   | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <1.5                        | <2.1                               | <1.6                                 |
| TP04_0.1-0.2         TP04         0.1-0.2         18/03/2015                                                                    | <0.1                  |              | <0.1           | <0.1       | <0.1               | <0.1            | <0.1                 | <0.1                  | <0.1     | <0.1                  | <0.1         | <0.1     | <0.1                    | <0.1        | <0.8                | <0.1         | <0.1   | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <1.5                        | <2.1                               | <1.6                                 |
| TP05_2.0-2.2         TP05         2-2.2         18/03/2015           TP06_2.0.2.4         TP06         2.2.4         10/02/2015 | -                     | -            | -              | -          | -                  | -               | -                    | -                     | -        | -                     | -            | -        | -                       | -           | -                   | -            | -      | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <0.1                        | -                                  | -                                    |
| TP06_3.0-3.1 TP06 3-3.1 18/03/2015                                                                                              | -                     | -            | -              | -          | -                  | -               | -                    | -                     | -        | -                     | -            | -        | -                       | -           | -                   | -            | -      | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <0.1                        | -                                  | -                                    |
| TP07_1.0-1.2         TP07         1-1.2         19/03/2015                                                                      | <0.1                  |              |                | <0.1       | <0.1               |                 |                      |                       | <0.1     | <0.1                  |              |          | <0.1                    | <0.1        | <0.8                | <0.1         |        | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       |              | <1.5                        | <2.1                               | <1.6                                 |
| TP08_1.1-1.2         TP08         1.1-1.2         19/03/2015                                                                    | <0.1                  |              | <0.1           | <0.1       | <0.1               | <0.1            |                      |                       | <0.1     | <0.1                  | <0.1         |          | <0.1                    | <0.1        | <0.8                | <0.1         |        | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <1.5                        | <2.1                               | <1.6                                 |
| TP09_0.4-0.5         TP09         0.4-0.5         19/03/2015                                                                    | <0.1                  |              | <0.1           | <0.1       | <0.1               | <0.1            | <0.1                 | <0.1                  | <0.1     | <0.1                  | <0.1         | <0.1     | <0.1                    | <0.1        | <0.8                | <0.1         | <0.1   | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <1.5                        | <2.1                               | <1.6                                 |
| TP10_0.1-0.2 TP10 0.1-0.2 19/03/2015                                                                                            | -                     | -            | -              | -          | -                  | -               | -                    | -                     | -        | -                     | -            | -        | -                       | -           | -                   | -            | -      | <0.1    | <0.1         | <0.1        | <0.1    | <0.6       | <0.2           | <0.1       | <0.3         | <0.1                        | -                                  | -                                    |

| Field_ID     | LocCode      | Sample Depth | Sampled Date |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |
|--------------|--------------|--------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|
| QA1          | TP03_1.0-1.1 |              | 19/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <( |
| TP01_0.1-0.2 | TP01         | 0.1-0.2      | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP02_0.5-0.6 | TP02         | 0.5-0.6      | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP03_1.0-1.1 | TP03         | 1-1.1        | 18/03/2015   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.8 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP04_0.1-0.2 | TP04         | 0.1-0.2      | 18/03/2015   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.8 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP05_2.0-2.2 | TP05         | 2-2.2        | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP06_3.0-3.1 | TP06         | 3-3.1        | 18/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP07_1.0-1.2 | TP07         | 1-1.2        | 19/03/2015   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.8 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP08_1.1-1.2 | TP08         | 1.1-1.2      | 19/03/2015   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.8 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP09_0.4-0.5 | TP09         | 0.4-0.5      | 19/03/2015   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.8 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |
| TP10_0.1-0.2 | TP10         | 0.1-0.2      | 19/03/2015   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | <0.1 | <0.1 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <  |

# **APPENDIX I VERIFICATION MATRIX**

| Isabella Weir                      | Upgrade                                                                |                            |                               |            |                   |               |            |          |     |          |
|------------------------------------|------------------------------------------------------------------------|----------------------------|-------------------------------|------------|-------------------|---------------|------------|----------|-----|----------|
| Construction                       | Verification Matrix                                                    |                            |                               |            |                   |               |            |          |     |          |
| LEGEND:                            | Prime Responsibility PR<br>Input Required I<br>Review R                |                            | Principal's Authorised Person |            |                   |               |            |          |     |          |
|                                    | Approval A                                                             |                            | thori                         |            | Design Consultant | 5             |            |          |     |          |
|                                    |                                                                        | ner                        | 's Au                         | ъ          | nsuo              | Dam Regulator | XNZ        |          |     |          |
|                                    |                                                                        | <b>CMTEDD</b><br>Dam Owner | cipal                         | Contractor | gn C              | Reg           | Jemena/ZNX | tra      |     |          |
| Task                               |                                                                        | <b>CMT</b><br>Dam          | Prine                         | Cont       | Desi              | Dam           | Jemo       | Telstra  | EPA |          |
| Construction Ri                    |                                                                        | Α                          | R                             | PR         | 1                 | Α             |            |          |     |          |
|                                    | Management Plan<br>Management Plan                                     |                            | R<br>R                        | PR<br>PR   | R<br>R            |               |            |          |     |          |
| Dam Safety Em                      |                                                                        | Α                          | R                             | PR         | ĸ                 | Α             | Α          |          |     |          |
|                                    | nvironmental Management Plan                                           |                            | R                             | PR         | R                 |               |            |          |     |          |
| Construction Pl                    | anning, Sequence and Methodology                                       |                            | R                             | PR         | R                 |               |            |          |     |          |
| Temporary Wo                       |                                                                        |                            | R                             | PR         | R                 |               |            |          |     |          |
| Environmental                      | ••                                                                     |                            | R                             | PR         | 1                 |               |            |          |     |          |
| Stakeholder Co<br>Services relocat |                                                                        | PR                         | 1                             |            |                   |               | <u> </u>   |          |     |          |
| Gas Main                           |                                                                        |                            | R                             | PR         | R                 |               | Α          |          |     | -        |
| Telstra                            |                                                                        |                            | R                             | PR         | R                 |               |            | Α        |     | 1        |
| Contractor Initi                   | -                                                                      | А                          | Α                             | PR         | Α                 |               |            |          |     |          |
|                                    | arising out of encountered conditions                                  | А                          | Α                             | PR         | Α                 |               |            |          |     |          |
| Principal initiat                  | -                                                                      |                            | A                             | PR         | R                 |               |            |          |     | -        |
|                                    | pping of Excavations<br>ndation treatments including:                  |                            | R                             | PR         | Α                 |               | <u> </u>   |          |     |          |
|                                    | raphic records                                                         | _                          | R                             | PR         | I/R               |               | <u> </u>   |          |     | -        |
| Groutin                            |                                                                        |                            | A                             | PR         | I/R               |               |            |          |     | 1        |
| Dental (                           | Concrete                                                               |                            | Α                             | PR         | I/R               |               |            |          |     |          |
| Cut -off                           |                                                                        |                            | Α                             | PR         | R                 |               |            |          |     | _        |
|                                    | Installation                                                           |                            | A                             | PR         | I/R               |               |            |          |     | -        |
| Subsoil<br>Material Select         | drain installation                                                     |                            | Α                             | PR         | I/R               |               |            |          |     | -        |
| Zone 1 l                           |                                                                        |                            | R                             | PR         | Α                 |               |            |          |     | -        |
| Zone 2 I                           | Fill                                                                   |                            | R                             | PR         | Α                 |               |            |          |     |          |
| Zone 3 I                           |                                                                        |                            | R                             | PR         | Α                 |               |            |          |     |          |
| Zone 4 i                           | · ·                                                                    |                            | R                             | PR         | Α                 |               |            |          |     | -        |
|                                    | A Fine filter<br>B Coarse Filter                                       |                            | R<br>R                        | PR<br>PR   | A<br>A            |               |            |          |     | -        |
|                                    | e Mix Design                                                           |                            | R                             | PR         | A                 |               |            |          |     | -        |
| Earthworks rec                     | -                                                                      |                            |                               |            |                   |               |            |          |     | -        |
|                                    | Is tracking                                                            |                            | R                             | PR         | R                 |               |            |          |     |          |
|                                    | ne and location of filling                                             |                            | R                             | PR         | R                 |               |            |          |     | -        |
|                                    | I testing records (including contamination testing)                    |                            | R<br>R                        | PR<br>PR   | R<br>A            |               |            |          | A   | -        |
|                                    | ed survey                                                              |                            | R                             | PR         | A                 |               |            |          |     | -        |
| WaE Su                             | · · · · · · · · · · · · · · · · · · ·                                  |                            | R                             | PR         | Α                 |               |            |          |     | -        |
| Defect r                           | rectification                                                          |                            | Α                             | PR         | Α                 |               |            |          |     |          |
| Sediment Remo                      |                                                                        |                            |                               |            |                   |               |            |          |     | -        |
|                                    | Ils tracking                                                           |                            | R                             | PR         |                   |               |            |          |     | -        |
|                                    | ne and location of stockpiling<br>ination testing                      | _                          | R<br>R                        | PR<br>PR   |                   |               |            |          | Α   | -        |
| Treatme                            | -                                                                      |                            | R                             | PR         |                   |               |            |          | A   | 1        |
|                                    | ent records                                                            |                            | R                             | PR         |                   |               |            |          | Α   | 1        |
|                                    | ed survey                                                              |                            | R                             | PR         |                   |               |            |          |     |          |
| Concrete Struct                    |                                                                        |                            |                               |            |                   |               |            |          |     |          |
|                                    | ork Design<br>cement Schedules                                         | _                          | R<br>R                        | PR<br>PR   |                   |               | <u> </u>   |          |     |          |
|                                    | ne and location of reinforcement placement                             |                            | R                             | PR         |                   |               |            |          |     |          |
|                                    | ne and location of concrete pours                                      |                            | R                             | PR         |                   |               |            |          |     |          |
|                                    | ls and installation of joints, sealants, waterstops                    |                            | Α                             | PR         | Α                 |               |            |          |     |          |
|                                    | cement testing records                                                 |                            | R                             | PR         | R                 |               | <u> </u>   |          |     |          |
| Concret<br>WaE sui                 | e testing records                                                      |                            | R<br>R                        | PR<br>PR   | R<br>R            |               |            |          |     |          |
|                                    | rectification                                                          | _                          | A                             | PR         | A                 |               | <u> </u>   |          |     |          |
| Steel Structure                    |                                                                        |                            |                               |            |                   |               |            |          |     |          |
| Shop Dr                            | -                                                                      | _                          | R                             | PR         |                   |               |            |          |     |          |
|                                    | sting records                                                          |                            | R                             | PR         |                   |               | <u> </u>   |          |     |          |
|                                    | on protection records<br>ne and location of steel element erection     |                            | R<br>R                        | PR<br>PR   |                   |               |            |          |     |          |
| WaE sui                            |                                                                        |                            | R<br>R                        | PR<br>PR   |                   |               |            |          |     |          |
|                                    | rectification                                                          |                            | A                             | PR         | Α                 |               |            |          |     |          |
| Mechanical Wo                      | orks                                                                   |                            |                               |            |                   |               |            |          |     |          |
| Pipe sel                           |                                                                        |                            | R                             | PR         | Α                 |               |            |          |     |          |
| Valve se                           |                                                                        |                            | R                             | PR         | A                 |               |            |          |     | <u> </u> |
|                                    | ne and location of component installation<br>and commissioning records | Α                          | R<br>A                        | PR<br>PR   | R<br>A            |               |            |          |     |          |
| First Filling Insp                 | -                                                                      | A                          | A                             | <u>г</u> к | A<br>PR           | Α             |            |          |     |          |
| n at rinnig insp                   | eport                                                                  | A                          | I/R                           | PR         | I/R               | A             | L          | <b> </b> | L   | <b>I</b> |

**APPENDIX J GAS MAIN CORRESPONDENCE** 

## 1369

## **Barlow**, Sam

| From:        | Crocker, Leigh <leigh.crocker@act.gov.au></leigh.crocker@act.gov.au>                      |
|--------------|-------------------------------------------------------------------------------------------|
| Sent:        | Thursday, 11 June 2015 11:38 AM                                                           |
| To:          | Li, Xunyong; Stojanov, Milan; Oxborrow, Stuart; Taylor, Nick; <b>Harrison Composition</b> |
| Subject:     | FW: Isabella Weir                                                                         |
| Attachments: | ISABELLA WEIR RELOCATION.pdf                                                              |

Hi Gents,

See below. Also looks like we have a drawing for the DA (attached to Jim's email). I assume its \$60k in \$300k or so, and given the time and risk advantages I think it confirms that directional drilling will be preferred.

I told Jim we would discuss this so we can respond quickly when he sends the final numbers, but looks on track.

Regards

Leigh

Leigh Crocker | Contract Engineer Phone 6207 9146 | Mobile 0414 510 553 Infrastructure Planning and Design | Civil Infrastructure and Capital Works Chief Minister, Treasury and Economic Development Directorate (CMTEDD) | ACT Government Level 3 Annex, Macarthur House, 12 Wattle Street Lyneham ACT 2602 | PO Box 818 Dickson ACT 2602 | www.economicdevelopment.act.gov.au Please consider the environment before printing this e-mail.

From: Schedule 2.2 (a)(i) Sent: Thursday, 11 June 2015 11:11 AM To: Crocker, Leigh Subject: FW: Isabella Weir

Leigh,

Apologies, that's a \$60k difference, I meant to write

From: Schedule 22(2)(0) Sent: Thursday, 11 June 2015 11:05 AM To: Crocker, Leigh (Leigh.Crocker@act.gov.au) Subject: FW: Isabella Weir

Leigh

Preliminary estimates from TR Civils indicate a \$60 difference between drilling and excavation.

I have asked them to document more thoroughly the scope and processes, along with their recommendations as the why drilling is the preferred option.

ZNX is exploring the availability of steel and having the rock jacket coating applied.

Give us another week or so, for us to prepare the total costs for each option.

Regards

Schedule 2.2 (a)(ii)

## 1370 Construction Project Planner





5-7 Johns Place HUME ACT 2620

From: Schedule222(a)(ii) Sent: Wednesday, 10 June 2015 3:15 PM To: Crocker, Leigh Subject: RE: Isabella Weir

Leigh

Acknowledged. Please note that "sign –off' for the DA will probably be by Jemena. Also the Letter of Offer might also be by Jemena.

I'll contact you as soon as I have some feed-back from TR Civils in regards to their preliminary costs and advice. has been investigating pipe procurement and I'll try to advise you further on that, when practical.

Thanks We'll keep talking..

Schedule 2.2 (a)(ii)

**Construction Project Planner** 





5-7 Johns Place HUME ACT 2620

From: Crocker, Leigh [mailto:Leigh.Crocker@act.gov.au] Sent: Wednesday, 10 June 2015 2:13 PM To: Schedule 2/2 (a)(0)

**Cc:** Oxborrow, Stuart; Taylor, Nick **Subject:** Isabella Weir

Schedule 2.2 (a

Isabella Weir – steel gas main relocation (meeting held between ZNX and ACT Government on Wednesday 3<sup>rd</sup> June 2015)

## 1371

Thank you for organising the meeting yesterday regarding the potential to relocate the steel gas main that currently goes through the Isabella Weir embankment.

As discussed, The ACT Government is upgrading Isabella Weir to double its flood capacity. As part of this project our designer, SMEC, have written to us recently regarding the dam safety issues associated with having a gas main through the embankment. In short SMEC's advice is that the main has to be removed from the embankment. Note that this is a new development and supersedes the previous discussion the ACT Government have had with ZNX regarding protection of the gas main in its current location.

At the meeting we discussed the potential to move the gas main, and how we might proceed with this project. The ACT Government voiced our preference for relocating the main upstream of the weir, probably using directional drilling. However the ACT Government would need to justify directional drilling on the basis of cost and risk when compared to the possibility of trenching the route when the pond is drained for our construction.

Following discussion about the various options and processes we agreed the following;

- 1. The ACT Government would provide all the currently available geotechnical information to enable ZNX to assess the costs and risks associated with directional drilling and trenching;
- 2. The issue of the potential relocation of the telecommunications conduit that was laid with the gas main was also discussed. SMEC and ZNX to resolve this issue with Telstra, and the directional drilling estimate will include an estimate for the relocation of the telecommunications conduit if agreed by Telstra;
- 3. The ACT Government will confirm the location of the adjacent 300mm watermain;
- 4. ZNX would also look at the issue of pipe supply to ensure adequate length of the appropriately coated steel pipe is available for the relocation, and develop a cost and timing estimate for the works;
- 5. Based on this preliminary advice the ACT Government will then formally confirm our intention to do the work, and in doing so confirm whether the trenching or the directional drilling option should be adopted;
- The ACT Government will commission SMEC to develop a draft DA for the works, and liaise with ZNX for its development. This will include an appropriate supporting letter and "sign off" from ZNX on the appropriateness of the DA. This work will commence now and be done in parallel with points 2 and 3 above;
- 7. Based on the resolution of all the issues listed above, ZNX will develop a "letter of offer" for the works. This document will become the contract between ACT Government and ZNX for the project, and will include;
  - Cost, including any upfront payments that may be required (e.g. for purchase of pipe);
  - o Timing;
  - ZNX as the manager of the work;
- 8. The project can start when the DA is approved and the ACT Government has formally accepted the letter of offer.

Finally, whilst no commitments were made, ZNX noted that, excluding unforseen holdups, and given appropriately coated pipes can be sourced, it is likely the project can be completed by Christmas. The final timing and cost will be confirmed in the letter of offer.

Please let us know if there are any misunderstandings or errors in this record of the meeting, and we would be happy to discuss and amend them as appropriate.

Regards

Leigh

Leigh Crocker | Contract Engineer Phone 6207 9146 | Mobile Infrastructure Planning and Design | Civil Infrastructure and Capital Works Chief Minister, Treasury and Economic Development Directorate (CMTEDD) | ACT Government Level 3 Annex, Macarthur House, 12 Wattle Street Lyneham ACT 2602 | PO Box 818 Dickson ACT 2602 | www.economicdevelopment.act.gov.au

Please consider the environment before printing this e-mail.

## 1372

-----

This email, and any attachments, may be confidential and also privileged. If you are not the intended recipient, please notify the sender and delete all copies of this transmission along with any attachments immediately. You should not copy or use it for any purpose, nor disclose its contents to any other person.

This is a confidential message intended for the named recipient(s) only. The contents herein are privileged to the sender and the use thereof is restricted to the intended purpose. If you have received this e-mail in error, please do not use, disclose, distribute, copy, print or relay on this email. If receipt is in error, please advise the sender by reply email. Thank you.

This e-mail has been scanned for viruses by Symantec.Cloud.



Suite 2, Level 1 243 Northbourne Avenue Lyneham, Canberra ACT 2602, Australia **T** +61 2 6234 1900 **F** +61 2 6234 1966 **E** canberra@smec.com **www.smec.com** 

29 April 2015

File: 2015/5255/ 3002402/001

Procurement & Capital Works PO Box 818 Dickson ACT 2602

Attn: Mr Miloje Beljic

Dear Mr Beljic,

### RE: Isabella Weir Upgrade Design and Construction Monitoring Impact of the existing 200mm gas main on design and construction of the Isabella Weir Upgrade

We are writing in regard to the 200mm diameter gas main which is located within the embankments forming Isabella Weir, and also extends across the creek channel immediately downstream of the weir. The impact of the main on the design and construction of the upgrade works for the weir has been discussed a number of times during the course of the project. Below is presented a summary of our understanding of the key aspects relating to the issue:

- Jemena/ZNX has indicated that they do not wish to relocate the mains. However, it is noted that the original (Jacobs-SKM) design concept for upgrading the weir provided for widening the existing labyrinth to the right (west) only. As such, it is judged that the gas main on this abutment would have needed to be relocated, possibly both in the embankment and downstream where the widened creek channel would be constructed.
- The primary purpose of the weir embankments is to retain the water in Isabella Pond. That the gas main was installed within the embankment following its (the embankment's) construction is surprising considering conduits through water retaining embankments should be avoided if possible. If a request were received today to install the gas main through the embankments, SMEC's recommendation would be that approval not be given. As stated numerous times, the gas main should not be located in the embankments.
- The presence of the gas main (and telecom cables) within the embankment results in 'defects' within the structure, and an associated increase in the risk of failure due to piping. Jacobs-SKM judged this risk to be low. Additional information obtained since the Jacobs-SKM assessment was undertaken indicates that the installed depth of the main is lower than previously considered, and the standard of installation is judged to be poor (it is not clear how Jacobs-SKM assessed this aspect). It is envisaged that settlement of fill beneath the mains could have occurred generally along the length of the mains, and overall the likelihood of piping is greater than assessed by Jacobs-SKM, albeit still not large. Irrespective of the assessed low likelihood of piping, Jacobs-SKM recommended that the sections of the gas main through the embankments be treated by construction of filter collars. It is agreed that the 'gas main' needs to be treated. It should be noted that when assessing the acceptability of risk, the ALARP (as low as reasonably practical) principle needs to be applied. In this case the cost of addressing the issue is judged to be relatively small and not disproportionate to the benefit, and as





such should be done.

- It should be noted that the downstream portions of the mains are located below full supply level, so the mains present an inherent defect in this portion of the embankments. It is our understanding that Jacobs-SKM had not reached a position on whether filters were required in the embankments generally to guard against piping, but an untreated gas main would increase the risk and hence the need for appropriate protection.
- Provision of filter collars would require exposing the downstream portions of the mains, placing the collars, with appropriate cut-offs to guard against settlement leading to 'windows' in the system, and extending the filter/drainage system downstream so any seepage which develops can be safely discharged. In addition, it may be appropriate to provide a 'core' along part of the length of the mains upstream of the filter collars.
- An alternative approach to providing piping protection for the gas mains in the embankments would be to extend the concrete abutment walls well past the location of the mains and associated trench. The gas mains would extend through the walls in a 'watertight' penetration, with the walls founded on rock, providing a non-erodible cut-off.
- The wall option requires exposing a section of the main where the wall is to be located. A number of design issues would need to be addressed including:
  - support of the main, it being supported partly on concrete and partly on soil, with potential for differential settlement and bending of the main;
  - $\circ$   $\;$  the condition of the main; it may need to be replaced prior to construction of the abutment walls
  - potential for corrosion of the main
  - foundation conditions
- Construction of protection works (whether a filter collar or concrete wall) require work to be undertaken on a live main, including temporary exposure and support.
- In the long term, maintenance of the main will remain an issue. Excavation within the embankment will remain problematic, particularly if access to the main in an emergency is required. Any work must be undertaken in the presence of, and to the requirements of, the owner of the weir. It should be noted that excavation would likely impact on the integrity of the filter collar, and hence this approach would not be recommended.

Cost estimates have been prepared for both relocating the gas main away from the weir (Option 1) and leaving it in its current position and treating it (Option 2). In terms of treatment, the cost estimate is based on extending the abutment wall option; the option of providing a filter collar is considered not suitable in view of the potential for future maintenance works impacting on the integrity of the filter protection system. It should be noted that the estimates are of a preliminary nature, and should be used for comparative purposes only.

#### • Option 1 – Relocation of Main.

Relocation of the main could potentially be achieved by:

- $\circ$  ~ realigning it across the Drakeford Drive Bridge, or
- $\circ$   $\;$  installing it beneath the pond upstream of the weir using directional drilling.

Either approach would require relocation of about 100m of main. A recent project in which SMEC was involved required relocation of a very short section of 100mm gas main, which cost in the region of \$2200/m. Allowing (say) 30% increase for the larger diameter and with no allowance for economies of scale, the cost of relocation would be of the order of \$290,000 - say \$300,000. As a check, a contractor was contacted to provide an informal indicative cost for installing 100m of 200mm gas main beneath the pondage using directional drilling. The indicative price provided was \$100,000, suggesting a cost of the order of \$300,000 is probably conservative.

#### • Option 2 – Treatment of Existing Main

Treating the existing main by extending the abutment walls would require:

 $\circ$  excavation and supporting the gas mains through both embankments

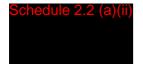
 protection of the section of main across the widened creek channel downstream of the weir

In addition, work would need to be undertaken in the presence of ZNX personnel due to working in the vicinity of a live main.

Indicative costs for these items of work are:

- excavation and temporary support of mains, comprising the 2 sections through the embankment plus the section across the creek channel allow \$50,000 lump sum
- concrete support of the main to rock through left and right embankments, say over 3m length; allow for 3m length or 10m3 (for both sections of main) at \$2,000/m3 = \$20,000.
- allow similar amount for transition sections = \$20,000
- install downstream protection works say 50 lineal metres at \$2,000/m = \$100,000 (assume main does not need to be relocated (lowered) or replaced due to poor condition)
- attendance on site by ZNX personnel when working within 3m of gas main; say 2 persons over 3x2 weeks @ \$5,000 per person per week = \$120,000

Total: \$310,000


There are a number of additional costs which cannot be quantified at this stage, including:

- additional cost to the contractor of working around the mains, resulting in inefficient excavation methods, additional WHS requirements, increased levels of supervision, liaison with Jemena/ZNX, and the like
- increased risk of delays to the works
- risk of damage to the main during exposure, for instance due to flooding of the works resulting in damage to temporary supports
- risk of damage to the main from differential settlement or corrosion above that which would typically occur
- increased duration of the works resulting in additional 'overhead costs'
- future costs associated with management of the main, including liaison between the owners of the main and the dam.

While the estimated cost for either approach is similar, it is judged that relocation would be cheaper noting the 'hidden' costs associated with retaining the main in its current location. Furthermore, relocating the main, in addition to simplifying construction, eliminates the risk to the structure and avoids potential long term operation and maintenance issues. As well, it is understood Jemena/ZNX does not want the gas main concrete encased, notwithstanding that the existing section of main where it crosses the creek channel downstream of the weir is encased in concrete. Overall, it is assessed that the main should be relocated.

#### Yours sincerely,

1375



Project Manager SMEC – Australia & New Zealand Division

# APPENDIX K EXTERNAL REVIEWER'S COMMENTS AND RESPONSES



## ISABELLA WEIR UPGRADE DESIGN Project No: 3002402

#### **INDEPENDENT VERIFICATION - ISABELLA WEIR UPGRADE DESIGN**

Design Stage: FSP

| Weir and | Embankment |
|----------|------------|
| ١        | Weir and   |

Date Documents Issued:

Organisation: Independent Reviewer

Reviewer: Schedule 2.2

Checked By: Review Date: SMEC Response

Response By: Schedule 2.2 (a)(ii)

Response Date: 8-Jun-16

Response Reviewed By: Schedule

| Item | Document  | Reference | Comments / Conditions                                                                                                                                                                                                 | SMEC Response                                        | Close Out Response |
|------|-----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|
|      | Drawings: |           |                                                                                                                                                                                                                       |                                                      |                    |
| 1    |           | 21        | Stage 4 include wording 'on each side'                                                                                                                                                                                | Agreed will be captured in the DR set.               |                    |
| 2    |           |           | You rightly say in the design report<br>that the top of the blinding concrete<br>must be treated as a construction<br>joint. Great. Make sure the<br>construction guys know and make sure<br>they do the right thing! | To be captured in specification.                     |                    |
| 3    |           | 109       | This flap valve should be checked<br>regularly. They have a habit of not<br>working when you want them to work.                                                                                                       | To be captured in the O&M manual                     |                    |
| 4    |           | 120 Sn 5  | You might be better to use stainless<br>steel dowels. Gal lasts 20-25 yrs, less if<br>water is present.                                                                                                               | Drawing to be amended to accommodate S/S dowels.     |                    |
| 5    |           | 154 Sn 4  | You would be better to use U-bars<br>than cross the top bars as you have<br>shown.                                                                                                                                    | Agreed detail to be amended.                         |                    |
| 6    |           |           | A quick check. The rockfill is not nec<br>compatible with the coarse filter if the<br>latter's grading is on the fine side of its<br>grading.                                                                         | To be addressed in next stage of the design process. |                    |
|      | Report:   |           |                                                                                                                                                                                                                       |                                                      |                    |
| 7    |           |           | We are dealing with a hydraulic<br>structure. We should be able to get a<br>lower peak temp than 50 deg. I would<br>aim for 40 deg C peak or at least 45<br>deg max.                                                  | To be incorporated into the specification            |                    |





## ISABELLA WEIR UPGRADE DESIGN Project No: 3002402

| Item | Document | Reference | Comments / Conditions | SMEC Response                                         | Close Out Response |
|------|----------|-----------|-----------------------|-------------------------------------------------------|--------------------|
| 8    |          | Sn 16.3   |                       | Provision to be incorporated into the tender document |                    |
| 9    |          | 192       | 2                     |                                                       |                    |
| 10   |          | 193       |                       |                                                       |                    |
| 11   |          | 194       |                       |                                                       |                    |
| 12   |          | 195       |                       |                                                       |                    |
| 13   |          | 196       | j                     |                                                       |                    |
| 14   |          | 197       |                       |                                                       |                    |
| 15   |          | 198       |                       |                                                       |                    |

